Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the field of human-computer interaction, the detection, extraction and classification of the electroencephalogram (EEG) spectral and spatial features are crucial towards developing a practical and robust non-invasive EEG-based brain-computer interface. Recently, due to the popularity of end-to-end deep learning, the applicability of algorithms such as convolutional neural networks (CNN) has been explored to achieve the mentioned tasks. This paper presents an improved and compact CNN algorithm for motor imagery decoding based on the adaptation of SincNet, which was initially developed for speaker recognition task from the raw audio input. Such adaptation allows for a compact end-to-end neural network with state-of-the-art (SOTA) performances and enables network interpretability for neurophysiological validation in cortical rhythms and spatial analysis. In order to validate the performance of proposed algorithms, two datasets were used; the first is the publicly available BCI Competition IV dataset 2a, which was often used as a benchmark in validating motor imagery classification algorithms, and the second is a dataset consists of primary data initially collected to study the difference between motor imagery and mental-task associated motor imagery BCI and was used to test the plausibility of the proposed algorithm in highlighting the differences in terms of cortical rhythms. Competitive decoding performance was achieved in both datasets in comparisons with SOTA CNN models, albeit with the lowest number of trainable parameters. In addition, it was shown that the proposed architecture performs a cleaner band-pass, highlighting the necessary frequency bands that were crucial and neurophysiologically plausible in solving the classification tasks.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.