Let \(p\in(1,\infty)\) and \(I=(0,1)\); suppose that \(T\colon L_{p}(I)\rightarrow L_{p}(I)\) is a~compact linear map with trivial kernel and range dense in \(L_{p}(I)\). It is shown that if the Gelfand numbers of \(T\) decay sufficiently quickly, then the action of \(T\) is given by a series with calculable coefficients. The special properties of \(L_{p}(I)\) enable this to be established under weaker conditions on the Gelfand numbers than in earlier work set in the context of more general spaces.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.