The thermal behavior of overhead power lines depends upon physical parameters, such as surface emissivity and line dimensions, as well as weather conditions. In this paper, the results of the convection and radiation cooling of a conductor that simulate a power line are presented. Laboratory experiments were conducted and the results were compared with the data obtained using empirical formulae from the literature. Both the laminar and the turbulent airflow were investigated.
This paper presents the concept and three practical examples of using complex thermal impedance for characterisation different thermal objects. The first problem describes estimation time shift between power and temperature in electric distribution systems with non-sinusoidal currents. The second example discussed here, shows the estimation of power losses distribution in the magnetic punched ferromagnetic strips. The third application presents the inverse thermal modelling of 3-layer biomedical objects (tissues) to estimate the thermal parameters. More details of the presented problems are in the appropriate papers of the authors referenced here.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.