Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Approximation properties of certain summation integral type operators
100%
EN
In the present paper, we study approximation properties of a family of linear positive operators and establish direct results, asymptotic formula, rate of convergence, weighted approximation theorem, inverse theorem and better approximation for this family of linear positive operators.
2
Content available remote Strong Cesáro summability of triple Fourier integrals
80%
EN
The theory of summability is a very extensive field, which has various applications. We prove the following theorem. Assume ƒ ϵ L∞(R3) with bounded support. If ƒ is continuous at some point (x1, x2, X3) ϵ R3, then the triple Fourier integral of ƒ is strongly q-Casáro summable at (x1, x2, X3) to the function value ƒ (x1, x2, X3) for every 0 < q < ∞. Furthermore, if ƒ is continuous on some open subset G of R3, then the strong q-Cesáro summability of the triple Fourier integral of ƒ is locally uniform on G.
EN
In this paper, we first study a composite relaxed resolvent operator and prove some of its properties. After that, we introduce a Yosida approximation operator based on the composite relaxed resolvent operator and demonstrate some properties of the Yosida approximation operator. Finally, we obtain the solution of a system of Yosida inclusions by applying these concepts.We construct a conjoin example in support of many concepts derived in this paper. Our concepts and results are new in the literature and can be used for further research.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.