We show that each general Haar system is permutatively equivalent in $L^{p}([0,1])$, 1 < p < ∞, to a subsequence of the classical (i.e. dyadic) Haar system. As a consequence, each general Haar system is a greedy basis in $L^{p}([0,1])$, 1 < p < ∞. In addition, we give an example of a general Haar system whose tensor products are greedy bases in each $L^{p}([0,1]^{d})$, 1 < p < ∞, d ∈ ℕ. This is in contrast to [11], where it has been shown that the tensor products of the dyadic Haar system are not greedy bases in $L^{p}([0,1]^{d})$ for 1 < p < ∞, p ≠ 2 and d ≥ 2. We also note that the above-mentioned general Haar system is not permutatively equivalent to the whole dyadic Haar system in any $L^{p}([0,1])$, 1 < p < ∞, p ≠ 2.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.), Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439-455] proved the following asymptotic formula: if $Ω ⊂ ℝ^d$ is a smooth bounded domain, 1 ≤ p < ∞ and $f ∈ W^{1,p}(Ω)$, then $lim_{s↗1} (1-s)∫_{Ω} ∫_{Ω} (|f(x)-f(y)|^p)/(||x-y||^{d+sp}) dxdy = K∫_{Ω} |∇f(x)|^p dx$, where K is a constant depending only on p and d. The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space $B_p^{s,p}(Ω)$. The purpose of this paper is to obtain analogous asymptotic formulae for some other equivalent seminorms, defined using coefficients of the expansion of f with respect to a wavelet or wavelet type basis. We cover both the case of the usual (isotropic) Besov and Sobolev spaces, and the Besov and Sobolev spaces with dominating mixed smoothness.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
By a general Franklin system corresponding to a dense sequence 𝓣 = (tₙ, n ≥ 0) of points in [0,1] we mean a sequence of orthonormal piecewise linear functions with knots 𝓣, that is, the nth function of the system has knots t₀, ..., tₙ. The main result of this paper is that each general Franklin system is an unconditional basis in $L^{p}[0,1]$, 1 < p < ∞.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study the problem of consistent and homogeneous colourings for increasing families of dyadic intervals. We determine when this problem can be solved and when it cannot.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove unconditionality of general Franklin systems in $L^{p}(X)$, where X is a UMD space and where the general Franklin system corresponds to a quasi-dyadic, weakly regular sequence of knots.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
By a general Franklin system corresponding to a dense sequence of knots 𝓣 = (tₙ, n ≥ 0) in [0,1] we mean a sequence of orthonormal piecewise linear functions with knots 𝓣, that is, the nth function of the system has knots t₀, ..., tₙ. The main result of this paper is a characterization of sequences 𝓣 for which the corresponding general Franklin system is a basis or an unconditional basis in H¹[0,1].
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We investigate when the trigonometric conjugate to the periodic general Franklin system is a basis in C(𝕋). For this, we find some necessary and some sufficient conditions.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We give a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order k is an unconditional basis in the atomic Hardy space H¹[0,1].
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.