The paper describes an innovative ultrasound imaging method called Doppler Tomography (DT), otherwise known as Continuous Wave Ultrasonic Tomography (CWUT). Thanks to this method, it is possible to image the tissue cross-section in vivo using a simple two-transducer ultrasonic probe and using the Doppler effect. It should be noted that DT significantly differs from the conventional ultrasound Doppler method of measuring blood flow velocity. The main difference is that when measuring blood flow, we receive information with an image of the velocity distribution in a given blood vessel (Nowicki, 1995), while DT allows us to obtain a cross-sectional image of stationary tissue structure. In the conventional method, the probe remains stationary, while in the DT method, the probe moves and the examined tissue remains stationary. This paper presents a method of image reconstruction using the DT method. First, the basic principle of correlation of generated Doppler frequencies with the location of inclusions from which they originate is explained. Then the exact process and algorithm in this method are presented. Finally, the impact of several key parameters on imaging quality is examined. As a result, the conclusions of the research allow to improve the image reconstruction process using the DT method.
Currently, methods such as conventional ultrasound B-mode scanning (US), computerized X-ray tomography (CT), magnetic resonance imaging (MRI), standard X-ray diagnostics, radioisotope imaging and thermography are used to visualize the internal structure of tissue in vivo and to diagnose the patient. Doppler tomography (DT) is an innovative method of reconstructing the image of the tissue section using ultrasonic waves and Doppler effect. In contrast to the currently applied solutions (US), this method uses a continuous wave, which, in theory, allows one to operate with higher energy and to detect smaller inclusions within the examined tissue. This study focuses on the analysis of DT simulation in circular geometry, where a two-transducer ultrasonic probe circulating around the tested object is used to measure the useful signal. In this paper, the influence on the tested object’s cross-section imaging quality of both the simulated Doppler signal’s registration parameters, and the calculation algorithm’s parameters, were analyzed.
In order to improve breast cancer detection rates, new and better imaging methods are required. Currently, the ultrasound tomography (UT) as non-invasive and safe hybrid method may contribute to achieving a new standard for breast cancer diagnostics. The aim of the paper was to analyse the imaging ability of tissue-like media structure found in female breast using the developed novel ultrasound computer-assisted tomographic scanner. Measurements was performed on commercial breast biopsy phantoms due to their well-defined structure with inclusions mimicking glandular tissue with lesions, as well as on the simple agar phantom. Obtained magnetic resonance images (MRI), conventional ultrasound images (US) or X-ray computed tomography (CT) images of the measured media sections were used for comparison. The analysis of the obtained results and carried out theoretical considerations have allowed to estimate the resolution of soft tissue UT imaging.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.