Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The term ‘‘peroxidase’’ designs a group of hemoproteins with a wide structural variability. These enzymes catalyze the redox reaction between hydrogen peroxide and some reductors. They can be found in animals, plants and microorganisms. In plants, peroxidases are involved in numerous cellular processes such as development and stress responses. In fact, they are involved in growth regulation by controlling hormonal and cell wall metabolism and antioxidant defense. On the other hand, these enzymes are considered as a biomarker indicating biotic and abiotic stresses. Under metallic stress conditions, the quantitative and qualitative profiles of peroxidases are generally modified. Such modulations could prove the major role played by these enzymes in the defense mechanism. In this paper, we discussed the variation of isoperoxidases behavior under metallic stress conditions.
EN
Exposure of chickpea seeds (Cicer arietinum L.) to cadmium stress for 6 days resulted in growth reduction and oxidative stress installation as exemplified by a strong accumulation of H₂O₂ and a disruption of enzymatic and non-enzymatic defense systems. The enrichment of the seed germinating medium with calcium and ethylene glycol tetraacetic acid (EGTA) relieved the detrimental effect of Cd on root growth. This protective effect would be the result of (1) protein thiol protection, as evidenced by thioredoxin system activation, and of (2) the glutathione disulfide content decrease. The absence of corrective effect of effectors on glutathione redox state should be associated with the concomitant decrease in regeneration and consumption processes of reduced forms of glutathione, namely by glutathione reductase and glutathione peroxidase activities, respectively. Calcium and EGTA application led to oxidative stress alleviation as evidenced by H₂O₂ content decrease and the restoration of catalase and ascorbate peroxidase activities at a level similar to control roots. Moreover, the analysis of the transcriptional system relating to the up-cited enzymes revealed a decreased gene expression subsequent to the enrichment of germination medium with the effectors. The present research provided deeper insights into the mechanisms induced by Ca and EGTA to protect plant cell against Cd-induced oxidative injury.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.