Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Analytic gaps
100%
EN
We investigate when two orthogonal families of sets of integers can be separated if one of them is analytic.
2
Content available remote The functor σ²X
100%
EN
We disprove the existence of a universal object in several classes of spaces including the class of weakly Lindelöf Banach spaces.
3
Content available remote A dichotomy for P-ideals of countable sets
100%
|
|
nr 3
251-267
EN
A dichotomy concerning ideals of countable subsets of some set is introduced and proved compatible with the Continuum Hypothesis. The dichotomy has influence not only on the Suslin Hypothesis or the structure of Hausdorff gaps in the quotient algebra $P(\mathbb{N})$/ but also on some higher order statements like for example the existence of Jensen square sequences.
4
Content available remote Gaps in analytic quotients
100%
EN
We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.
5
Content available remote Chain conditions in maximal models
63%
EN
We present two $ℙ_{max}$ varations which create maximal models relative to certain counterexamples to Martin's Axiom, in hope of separating certain classical statements which fall between MA and Suslin's Hypothesis. One of these models is taken from [19], in which we maximize relative to the existence of a certain type of Suslin tree, and then force with that tree. In the resulting model, all Aronszajn trees are special and Knaster's forcing axiom 𝒦₃ fails. Of particular interest is the still open question whether 𝒦₂ holds in this model.
6
Content available remote Chains and antichains in Boolean algebras
63%
|
|
nr 1
55-76
EN
We give an affirmative answer to problem DJ from Fremlin's list [8] which asks whether $MA_{ω_1}$ implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.
7
Content available remote The isomorphism relation between tree-automatic Structures
63%
EN
An ω-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω-tree-automatic structures. We prove first that the isomorphism relation for ω-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n ≥ 2) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for ω-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n ≥ 2) is neither a Σ21-set nor a Π21-set.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.