Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Consider the linear discrete-time fractional order systems with uncertainty on the initial state {Δαxi+1=Axi+Bui, i≥0x0=τ0+τ̂0∈Rn, τ̂0∈Ωyi=Cxi, i≥0}, where A,B and C are appropriate matrices, x0 is the initial state, yi is the signal output, α the order of the derivative, τ0 and τ̂0 are the known and unknown part of x0, respectively, ui=Kxi is feedback control and Ω⊂Rn is a polytope convex of vertices w1,w2,...,wp. According to the Krein–Milman theorem, we suppose that τ̂0=Σ pj=1αjwj for some unknown coefficients α1≥0,...,αp≥0 such that Σ pj=1αj=1. In this paper, the fractional derivative is defined in the Grünwald–Letnikov sense. We investigate the charac-terisation of the set χ(τ̂0,ϵ) of all possible gain matrix K that makes the system insensitive to the unknown part τ̂0, which means χ(τ̂0,ϵ)={K∈Rm×n / ∥∂yi∂αj∥≤ϵ, ∀j=1,...,p,∀i≥0}, where the inequality ∥∂yi∂αj∥≤ϵ showing the sensitivity of yi relative-ly to uncertainties {αj}j=1p will not achieve the specified threshold ϵ>0. We establish, under certain hypothesis, the finite determination of χ(τ̂0,ϵ) and we propose an algorithmic approach to made explicit characterisation of such set.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.