If E is an elliptic curve defined over a quadratic field K, and the j-invariant of E is not 0 or 1728, then $E(ℚ^{ab})$ has infinite rank. If E is an elliptic curve in Legendre form, y² = x(x-1)(x-λ), where ℚ(λ) is a cubic field, then $E(K ℚ^{ab})$ has infinite rank. If λ ∈ K has a minimal polynomial P(x) of degree 4 and v² = P(u) is an elliptic curve of positive rank over ℚ, we prove that y² = x(x-1)(x-λ) has infinite rank over $Kℚ^{ab}$.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a square-free positive integer N, we study the normalizer of ΓΔ(N) in PSL2(ℝ) and investigate the group structure of its quotient by ΓΔ(N) under certain conditions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.