Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aluminium contaminated soil is currently being a concern due to the use of aluminium waste as a material for building roads and river dams in Jombang District, Jawa Timur Province, Indonesia. This application was debated because aluminium waste is categorized as hazardous waste. One widely known method for treating the metal contaminated soil is bioremediation. One potential indigenous bacterial species to remove aluminium, Vibrio alginolyticus was isolated from contaminated soil. A toxicity test to V. alginolyticus showed that this bacterium could grow in aluminium contaminated soil until 100 mg/L equal to 48 mg/kg concentration. The removal of aluminium from soil was conducted by using 50 and 100 mg/L concentration. The result showed that the addition of 2% v/v of V. alginolyticus can remove 5.48% aluminium from 100mg/L contaminated soil initial concentration after 12 days of test period. The addition of V. alginolyticus did not significantly influence the removal of aluminium from contaminated soil (p>0.05).
EN
Chromium in wastewater is classified as one of the dangerous contaminants that require further treatment before being discharged to water body. The concentration of chromium in water body, especially river, has increased as many industries utilize chromium as raw material and then discharge their wastewater without any treatment. Biosorption is one of methods that are widely used to treat heavy metal containing wastewater. Bacteria are the most common microorganisms to be used as heavy metal treatment agent. Azotobacter s8, Bacillus subtilis and Pseudomonas putida had been proven to have a heavy metal resistant capability. The screening test showed that Minimum Inhibitory Concentration (MIC) value of chromium for all bacteria ranged from 100 to 250 mg/L of CrCl3. The chromium biosorption test by bacteria showed that Azotobacter s8 was able to remove 10.53%, and Bacillus subtilis was able to remove 5.68% chromium from 50 mg/L initial concentration, while Pseudomonas putida showed no chromium removal. The chromium biosorption capacity by Azotobacter s8 was 580.08 mg/g and 349.30 mg/g for Bacillus subtilis.
EN
Batik is one of ethnical cultures of Indonesia. The batik production has spread throughout Indonesia. One of the batik industry areas is located in Jetis, Sidoarjo, Indonesia. This industry has been operating for approximately 350 years without processing its wastewater. The batik wastewater contains several toxic compounds such as high BOD, COD and color pigment. These compounds can be harmful for the environment if discharged directly to water bodies. Phyto-treatment might be a solution to overcome this problem. The use of Scirpus grossus and Iris pseudacorus with variations of waste irrigation system using the intermittent method showed a COD removal up to 89% and BOD removal up to 97%. Mixed culture of S. grossus and I. pseudacorus showed a better removal than its single culture. The highest removal of BOD and COD was obtained in reactor with mixed culture plants under Flood/Drain ratio of 2:1.
EN
This study aimed to determine the ability to modify slow sand filter (SSF) media with silica sand or Anadara granosa shells on the efficiency of removal of turbidity, total suspended solids (TSS), and iron in the water of Kali Jagir Surabaya as an effort to achieve clean water in disaster areas, to obtain the influence of variables, and to optimize the obtained results. The research data was processed using Design Expert 11 Software which factors consisted of media type, filtering speed, and running time, for the responses of removal efficiencies for each parameter. The reactor was operated continuously for 6 days, and samples were analyzed for turbidity parameters based on Indonesian standard (SNI 06-6989.25-2005); TSS and Iron Standard Method 23rd 3500A. In addition, the results of the parameters were processed using the Analysis of Variance (ANOVA) to show the significant effect of the variables on the efficiency of the elimination of all parameters. Optimal research was achieved in the SSF reactor unit with silica sand media type and filtering speed of 0.1 m/hour turbidity removal efficiency of 82.07%; TSS 89.5%; and 50.14% iron. However, the reactor that was chosen was the filtering speed of 0.1 m/hour with a flow rate of 22.8 L/day, while the SSF was suitable to be applied in disaster areas, which had a large discharge. Hence, the reactor is suitable for use in water sanitation in disaster areas, namely with a filtering speed of 0.3 m/hour which produces a discharge of 68.4 L/day with variations of sand, geotextile, and silica sand media.
EN
Phytoremediation is considered of a cost effective and environmentally friendly technology and has been used successfully for the remediation of soils and water contaminated with various pollutants. Specifically for full scale application to treat industrial wastewater, phytoremediation is used as sole technology for different types of wetlands. However, phytoremediation of polluted water in wetland type reactor has been mostly studied as black box. The method to measure the performance is only based on pollutant removal efficiency and there is very limited information available about of the pollutant removal mechanisms and process dynamics in these systems. Thus, the aim of this chapter was to briefly review basic processes of phytoremediation, its mechanisms and parameters, and its interaction between rhizo-remediation and microbe-plant. In addition, this chapter also elaborated phytoremediation challenges and strategies for full-scale application, its techniques to remove both organic and inorganic contaminants by aquatic plants in water, and some examples of applications in industries.
EN
This research aimed to discover the macroscopic, microscopic, and physiological characteristics and the genus of heterotrophic bacteria found in the schmutzdecke or biofilm layer in slow sand filters. The isolation of heterotrophic bacteria in the schmutzdecke applied the pour plate and quadrant streak method, while the characterization used macroscopic, microscopic, and physiological tests. Samples were taken from the schmutzdecke on top of the filter layer, and they were diluted 3, 4, and 5 times, then grown in Nutrient Agar media in order to isolate heterotrophic bacteria. The results of the research were analyzed using the identification manual books titled Bergey’s Manual of Determinative Bacteriology, 9th edition and Manual for The Identification of Medical Bacteria, 3rd edition. These manuals show the names of the genus of bacteria in the schmutzdecke layer. On the basis of the identification results from macroscopic, microscopic, and physiological tests, there were 4 dominant genera out of 18 living isolates obtained from the schmutzdecke layer, namely Kurthia gibsonii, Bacillus badius, Bacillus firmus, and Bacillus lentus. The similarity percentage of these 4 isolates was 83%, 81%, 85%, and 77% respectively.
EN
Microbial Salinity Cell (MSC) can simultaneously desalinate water and generate electricity from the biodegradation of organic compound in wastewater. Utilization of a three-chambers configuration system along with electrolyte recirculation, creates a desalination process which occurs when the salt ions from the anode and cathode chambers are accumulated into the middle chamber, driven by the electrical energy generated from the organic compound biodegradation. The performance of three-chambers electrolyte recirculation MSC was investigated using three different NaCl concentrations of 2.0 g/L, 4.0 g/L, and 8.0 g/L, with the acetate concentration of 0.82 g/L. At 2.0 g/L NaCl, the maximum power density production was 42.76 mW/m2, increasing conductivity in the middle chamber from 15.09 µS/cm to 0.74 mS/cm. At 4.0 g/L, the maximum power density reached was 53.37 mW/m2, and conductivity in the middle chamber was raised from 60.08 µS/cm to 2.74 mS/cm. At 8.0 g/L, the power density was 29.29 mW/m2 and conductivity in the middle chamber increased from 10.0 µS/cm to1.65 mS/cm. The performance of MSC was correlated with the initial NaCl concentration, with optimum NaCl concentration which was at 4.0 g/L, able to generate the highest power of 53.37 mW/m2 and showed the highest increasing conductivity from 80.8 to 2.74 mS/cm.
EN
Seashells waste is abundant in coastal area, especially in the locations where fisheries are a major occupation. This abundant resource of seashells opens a new opportunity further utilization. Seashells waste is a source of CaCO3, which may be converted into CaO via the calcination process. This study analyzed the characteristics of the CaO produced via calcination process at different temperature and calcination time. The calcination process was carried out at a temperature of 800°C, 900°C, and 1000°C with variation of 2, 3, and 4 hours in time. The Fourier transform infrared spectroscopy (FTIR) result showed that the spectrum of 2513 cm-1 as an indication of the C-H group containing CaO appearing after calcination. The FTIR results suggest that the calcination time did not gave major alteration to the functional groups. The results of X-ray diffraction (XRD) analysis showed that CaO laid at the angle of 58.1° and 64.6°. Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS) results showed that the most significant compositional outcome after the calcination process was Ca and O at all temperatures and calcination times. All calcined seashells showed rough surface and irregular shape particles. The result of a Thermogravimetric analysis (TGA) suggested that the highest mass alteration occurred at a temperature of 800°C with 78 mins of calcination time.
EN
This study aimed to determine the performance of modified slow sand filter (SSF) media with blood clam shells (Anadara granosa) and activated carbon to remove turbidity, TSS, TDS, and FOG on the food court wastewater. The concentration of water pollutant parameters processed by SSF was determined based on Indonesia water quality standards, as well as knowing the optimum operational parameters of intermittent slow sand filter with Response Surface Methodology (RSM). The research data was processed using the Optimal type (custom) design which consisted of independent factors including the type of filter media, the addition of bacteria to the grease trap pre-treatment unit, and running time, as well as the research response in the form of the effectiveness of removing turbidity, TSS, TDS, and FOG. The reactor was operated intermittently (48 hours) for a maximum of 22 days and the concentration of pollutant parameters was calculated using the Standard Methods. The results of the Analysis of Variance (ANOVA, p<0.05) in the 2FI model of the study showed that there was a significant effect of all independent factors on the effectiveness of removing all water pollutant parameters. The most optimal operational parameters were achieved with the type of activated carbon media, the addition of Bacillus sp. in the grease trap pre-treatment unit in the amount of as much as 1%, and the detention time of 4 days, with the effectiveness of removing turbidity reaching 39.53%; TSS 45.25%; TDS 19.30%; FOG 61.35%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.