In this note a commutant lifting theorem for vector-valued functional Hilbert spaces over generalized analytic polyhedra in ℂⁿ is proved. Let T be the compression of the multiplication tuple $M_z$ to a *-invariant closed subspace of the underlying functional Hilbert space. Our main result characterizes those operators in the commutant of T which possess a lifting to a multiplier with Schur class symbol. As an application we obtain interpolation results of Nevanlinna-Pick and Carathéodory-Fejér type for Schur class functions. Our methods apply in particular to the unit ball, the unit polydisc and the classical symmetric domains of types I, II and III.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.