Iron is one of the most common components in water that adversely affect humans, other living organisms and parameters of water bodies. Therefore, during using and consuming natural waters, and discharging sewage into surface water bodies, it is necessary to remove iron compounds from the aquatic environment. The use of capillary materials in water purification processes is a promising area of research. Experimental data proved the high efficiency of capillary materials application, providing higher efficiency of iron ions removal from model solutions for real water sources of different origin compared with the traditional method of settling. The main advantage of the application of materials with capillary properties is the simplicity of implementation of the method and there is no need to use electricity and any additional reagents. The effect of various factors on the process of water deironing with the application of capillary materials was studied. It was found out that the density has a little effect on the process at an iron concentration range from 1 to 5 mg/dm3 . The increase in competing ions content intensifies the process of divalent ferrous ions transition to trivalent. During the deironing of artesian water, the degree of iron removal exceeded 90 %, while the residual concentration was below the MPC.
Among all known inorganic pollutants of wastewater and natural water that adversely affect water bodies, different living organisms and human beings, iron compounds are the most common. Before discharging the wastewater into water bodies, it is important to remove iron ions from wastewater. The application of capillary materials in water and wastewater treatment is a promising direction of ecology and technology. The capillary properties of materials allow the development of quite simple, autonomous, highly efficient and energy-saving systems for water purification. The aim of the present paper was the investigation of the influence of the basic conditions of the filtration process with the application of capillary materia on the efficiency of iron ions removal. The initial concentration of the model solution, pH and temperature of the filtration process, as well as the contact area of the liquid phase with oxygen of the air were studied. The proposed method is appropriate for the treatment of water in the concentration range from 5 to 10 mg/dm3 with an optimum pH in the range of 4–7. The experimental data showed high efficiency of capillary materials application, providing sufficient removal of iron ions from low concentrated solutions, compared to the traditional method of precipitation. The main advantage of the capillary materials is the simplicity of their application, quite high degree of purification and there no need to consume electricity or additional reagents, which allows creating autonomous water treatment facilities and plants.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.