Współczesne aspekty Przemysłu 4.0 ukierunkowane są na analizę danych, ale również na podejmowanie odpowiednich decyzji dotyczących produkcji biznesowej oraz na obszary związane z predykcją uszkodzeń elementów maszyn, które decydują o zachowaniu ciągłości procesów produkcyjnych.
For a long time, scientific and technical work has been focused on production management, which affects both the correctness of the process and the costs generated. One of the integral elements of the production process management is energy, which has an impact on the organization of work, operation of machines or production. Predicting the energy consumption of smart facilities is crucial for implementing energy-efficient management systems, the area of this problem is a key aspect of smart grids whereby loads must be planned in real time. One of the main tasks of intelligent systems is to optimize the energy demand and costs to maximize energy efficiency of the facility. According to forecasting requirements, the following article presents several approaches to prediction of energy consumption models for production engineering systems. The proposed models were adopted and analyzed in terms of their usability and were trained and validated with the use of real data collected from the electrical installation of some company using the APA IPOE system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.