We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We introduce the notions of T-Rickart and strongly T-Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that R is right Σ-t-extending if and only if every R-module is T-Rickart. Also, every free R-module is T-Rickart if and only if $R = Z₂(R_{R})⊕ R'$, where R' is a hereditary right R-module. Examples illustrating the results are presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.