We deal with the stability of the orthogonal additivity equation, presenting a new approach to the proof of a 1995 result of R, Ger and the second author. We sharpen the estimate obtained there. Moreover, we work in more general settings, providing an axiomatic framework which covers much more cases than considered before by other authors.
We solve a conditional functional equation of the form \[ x \perp^{\rho} y\Rightarrow f (x + y) = f (x) + f (y), \] where \(f\) is a mapping from a real normed linear space \((X, \| · \|)\) with \(\text{dim} X \geq 2\) into an abelian group \((G, +)\) and \(\perp^\rho\) is a given orthogonality relation associated to the norm.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.