Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On the Bernstein-Walsh-Siciak theorem
100%
|
2012
|
tom 212
|
nr 1
55-63
EN
By the Oka-Weil theorem, each holomorphic function f in a neighbourhood of a compact polynomially convex set $K ⊂ ℂ^{N}$ can be approximated uniformly on K by complex polynomials. The famous Bernstein-Walsh-Siciak theorem specifies the Oka-Weil result: it states that the distance (in the supremum norm on K) of f to the space of complex polynomials of degree at most n tends to zero not slower than the sequence M(f)ρ(f)ⁿ for some M(f) > 0 and ρ(f) ∈ (0,1). The aim of this note is to deduce the uniform version, sometimes called family version, of the Bernstein-Walsh-Siciak theorem, which is due to Pleśniak, directly from its classical (weak) form. Our method, involving the Baire category theorem in Banach spaces, appears to be useful also in a completely different context, concerning Łojasiewicz's inequality.
2
Content available remote On roots of polynomials with power series coefficients
100%
|
2003
|
tom 80
|
nr 1
211-217
EN
We give a deepened version of a lemma of Gabrielov and then use it to prove the following fact: if h ∈ 𝕂[[X]] (𝕂 = ℝ or ℂ) is a root of a non-zero polynomial with convergent power series coefficients, then h is convergent.
3
Content available remote On the Kuratowski convergence of analytic sets
63%
|
|
nr 2
101-112
EN
We discuss some conditions which guarantee that the Kuratowski limit of a sequence of analytic sets is a Nash set.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.