In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated by applying the classical Least Squares Method (LSM). As an example, the problem of optimal selection for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from the D-optimum measurement points for calibration of the differential pressure sensor are compared with those from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and Equidistant calibration curves is done.
Single-frame methods of determining the attitude of a nanosatellite are compared in this study. The methods selected for comparison are: Single Value Decomposition (SVD), q method, Quaternion ESTimator (QUEST), Fast Optimal Attitude Matrix (FOAM) − all solving optimally the Wahba’s problem, and the algebraic method using only two vector measurements. For proper comparison, two sensors are chosen for the vector observations on-board: magnetometer and Sun sensors. Covariance results obtained as a result of using those methods have a critical importance for a non-traditional attitude estimation approach; therefore, the variance calculations are also presented. The examined methods are compared with respect to their root mean square (RMS) error and variance results. Also, some recommendations are given.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.