Badania wskazują, że technologie informacyjno-komunikacyjne (ICT) istotnie wpływają na rozwój światowych gospodarek i poprawiają jakość życia społeczeństwa. Obecnie znaczna część innowacji oraz zgłoszonych patentów dotyczy sektora ICT. Pierwszym celem artykułu jest analiza inwestycji przemysłowych w badania i rozwój (B+R) firm należących do sektora ICT, które mają siedzibę w Unii Europejskiej. Drugi cel polega na zbadaniu związku tych inwestycji z poziomem cyfryzacji przy wykorzystaniu złożonego Indeksu Gospodarki Cyfrowej i Społeczeństwa Cyfrowego (DESI). Główny wkład badania omawianego w artykule to propozycja ustalenia ilościowej zależności pomiędzy B+R oraz DESI, a także identyfikacja najistotniejszego składnika DESI. Analizy oparto na rankingu tysiąca największych inwestorów B+R, opracowanym na podstawie danych z Economics of Industrial Research and Innovation (IRI) za lata 2013–2019. Zastosowano hierarchiczne grupowanie Warda. W wyniku analiz stwierdzono, że obie badane zmienne mają wyraźną strukturę grupową. Ponadto zaobserwowano istnienie zależności wykładniczej przewidującej wzrost wydatków na B+R o 18%, kiedy DESI wzrośnie o 1 p.proc. Model lasów losowych posłużył do wskazania kapitału ludzkiego jako najważniejszego czynnika wpływającego na wydatki na B+R poszczególnych firm. Przeprowadzone badanie pozwala zauważyć rosnący trend w inwestycje B+R w sektorze ICT o przewidywalnej wartości ponad 46 mld euro w roku 2021.
EN
Multiple studies have shown that Information and Communication Technology (ICT) has boosted the growth of the global economy and improved the quality of life. At present, a significant proportion of innovations and new patents are held by companies operating in the ICT sector. This study has two primary aims. The first of them is an analytical comparison of industrial investments in research and development (R&D) in ICT-related companies in various countries from the European Union. The second is to examine the relationship between these investments and each country's digital performance illustrated by the Digital Economy and Society Index (DESI). The main contribution of this paper is a proposal of a means to determining the quantitative relationship between R&D and DESI as well as the identification of the most important DESI component. The author focuses on the largest R&D investors from a list of 1,000 companies, created on the basis of data published by the Economics of Industrial Research and Innovation (IRI), covering the years 2013-2019. Both variables (DESI and R&D) have a clear joint group structure found by Ward's hierarchical clustering. Furthermore, an exponential law was identified predicting an increase of 18% in R&D expenditure when a 1 percentage point growth in DESI is observed. Among all the components of DESI, the applied random forest model proves human capital is the most important factor attracting R&D investments. Moreover, a separate analysis of R&D relating to the analysed companies showed a growing trend in R&D investments with its predicted value reaching over 46 billion euro in 2021.
Innovation is one of the main determinants of economic development. Innovative activity is very complex, thus difficult to measure. The complexity of the phenomenon poses a great challenge for researchers to understand its determinants. The article focuses on the problem of innovation-related geographical disparities among European Union countries. Moreover, it analyses the principal components of innovation determined on the basis of the European Innovation Scoreboard (EIS) dimensions. The aim of the paper is to identify the principal components of the innovation index which differentiate countries by analysing the structure of the correlation between its components. All calculations were based on indicators included in the EIS 2020 Database, containing data from the years 2012–2019. A comparative analysis of the studied countries’ innovation performance was carried out, based on the principal component analysis (PCA) method, with the purpose of finding the uncorrelated principal components of innovation which differentiate the studied countries. The results were achieved by reducing a 10-dimensional data set to a 2-dimensional one, for a simpler interpretation. The first principal component (PC1) consisted of the human resources, attractive research systems, and finance and support dimensions (understood as academia and finance). The second principal component (PC2), involving the employment impacts and linkages dimensions, was interpreted as business-related. PC1 and PC2 jointly explained 68% of the observed variance, and similar results were obtained for the 27 detailed indicators outlined in the EIS. We can therefore assume that we have an accurate representation of the information contained in the EIS data, which allows for an alternative assessment and ranking of innovation performance. The proposed simplified index, described in a 2-dimensional space, based on PC1 and PC2, makes it possible to group countries in a new way, according to their level of innovation, which offers a wide range of application, e.g. PC1 captures geographic disparities in innovation corresponding to the division between the old and new EU member states.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.