Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
Corporate reputation is an economic asset and its accurate measurement is of increasing interest in practice and science. This measurement task is difficult because reputation depends on numerous factors and stakeholders. Traditional measurement approaches have focused on human ratings and surveys, which are costly, can be conducted only infrequently and emphasize financial aspects of a corporation. Nowadays, online media with comments related to products, services, and corporations provides an abundant source for measuring reputation more comprehensively. Against this backdrop, we propose an information retrieval approach to automatically collect reputation-related text content from online media and analyze this content by machine learning-based sentiment analysis. We contribute an ontology for identifying corporations and a unique dataset of online media texts labelled by corporations' reputation. Our approach achieves an overall accuracy of 84.4%. Our results help corporations to quickly identify their reputation from online media at low cost.
2
Content available remote Predicting automotive sales using pre-purchase online search data
100%
EN
Sales forecasting is an essential element for implementing sustainable business strategies in the automotive industry. Accurate sales forecasts enhance the competitive edge of car manufacturers in the effort to optimize their production planning processes. We propose a forecasting technique that combines keyword-specific customer online search data with economic variables to predict monthly car sales. To isolate online search data related to pre-purchase information search, we follow a backward induction approach and identify those keywords that are frequently applied by search engine users. In a set of experiments using real-world sales data and Google Trends, we find that our keyword-specific forecasting technique reduces the out-of-sample error by 5\% as compared to existing techniques without systematic keyword selection. We also find that our regression models outperform the benchmark model by an out-of-sample prediction accuracy of up to 27%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.