The reflection coefficient of the open end belongs among the essential parameters in the physical description of a flue organ pipe. It leads directly to practical topics such as the pipe scaling. In this article, sound propagation is investigated inside an organ pipe with the most intense mean flow that is achievable under musically relevant conditions. A theoretical model is tested against the experimental data to obtain a suitable formula for the reflection coefficient when a non-negligible flow through the open end is considered. The velocity profile is examined by means of particle image velocimetry. A fully developed turbulent profile is found and interactions of the acoustic boundary layer with the turbulent internal flow are discussed. A higher value of the end correction than expected from the classical result of Levine and Schwinger is found, but this feature shall be associated with the pipe wall thickness rather than the mean flow effects.
The airflow in the mouth of an open and closed flue organ pipe of corresponding geometrical proportions is studied. The phase locked particle image velocimetry with subsequent analysis by the biorthogonal decomposition is employed in order to compare the flow mechanisms and related features. The most significant differences lie in the mean velocity distribution and rapidity of the jet lateral motion. Remarks on the pressure estimation from PIV data and its importance for the aeroacoustic source terms are made and a specific example is discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.