Purpose: After a thorough study of literature it is concluded that the studies related to unskirted/skirted octagonal footings on sand have not yet been investigated. Thus, this paper presents a numerical analysis to assess the ultimate bearing capacity of the unskirted, unskirted-embedded, singly and doubly skirted octagonal footings resting on different sands (S1, S2, and S3). The length of skirt and depth of the embedded footing were varied from 0.0B to 1.5B. Design/methodology/approach: The numerical square and octagonal footing with singly and doubly skirted footing models were developed using Plaxis 3D software. Findings: The results of the doubly skirted octagonal footings ultimate bearing capacity were marginally higher in comparison to the singly skirted footing at all normalised skirt depths as well as for all sands up to a Ds/B ratio 0.25 beyond which the increase in the ultimate bearing capacity in case of doubly skirted footing was appreciable. Research limitations/implications: The results presented in this paper were based on numerical analysis. However, for the actual footings the soil placement and compaction, details of skirt construction and the stress level will be different from the numerical analysis. Further investigations using full-scale numerical models simulating field size footings were recommended to generalize the results. Originality/value: No such study on singly and doubly skirted octagonal shaped footings were conducted so far. Hence, an attempt was made in this article to predict the bearing capacity of those footings using Plaxis 3D.
Purpose: The paper presents an experimental and numerical study to evaluate the bearing capacity of unskirted, singly and doubly skirted irregular pentagonal footings on different sands (S1, S2, S3) at a relative density of 30 %. The skirt depth of the footing was varied from 0.0B to 1.5B (B is the width of the square footing). Design/methodology/approach: The experimental and numerical study of the singly and doubly skirted irregular pentagonal footing resting on sands was modelled in a test tank and Plaxis 3D software respectively. Findings: The results of this study reveal that the bearing capacity was higher for the skirted irregular pentagonal footings on sand S3 followed by sand S2 and S1. The lowest percentage improvement for the singly skirted footing on sand S3 was 18.51% at a Ds/B = 0.25 whereas the highest improvement was 90.81% at a Ds/B = 1.50 for the singly skirted footing on sand S2. The highest percentage improvement for the doubly skirted footing on sand S2 was 95.13% at a Ds/B = 1.5 whereas the lowest improvement was 23.70% at a Ds/B = 0.25 the doubly skirted footing on sand S3. The results further revealed that the numerically obtained bearing capacity was marginally higher in comparison to the one obtained experimentally for the footings on all sands. Further, the experimental results validated the results obtained numerically with an average deviation of 8%. The percentage improvement in the bearing capacity was higher for the irregular pentagonal footing resting on sand S2 in comparison to sand S3 and S1. The settlement response of the irregular pentagonal footings is unchanged by increasing the number of elements beyond 7700. Both the experimental and numerical studies revealed a linear elastic behaviour at Ds = 0.5B, while the experimentally obtained pressure-settlement ratio plot shows a clear failure at Ds= 1B and 1.5B. Research limitations/implications: The results presented in this paper were based on the experimental and numerical study conducted on small scale model footings. However, for the actual footings, further study is recommended using full-scale field size footings to generalize the results. Originality/value: No experimental and numerical studies on singly and doubly skirted irregular pentagonal footings were conducted so far. Hence, an attempt was made in this article to predict the bearing capacity of these footings experimentally and using Plaxis 3D respectively.