Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom 43
|
nr 2
EN
Effectiveness and mode of therapeutic gene delivery in vivo as well as biological safety of such transfer must be improved before widespread application of gene therapy in the clinic becomes possible. Most research has so far focused on recombinant viral delivery systems. Clinical future seems to belong, however, to nonviral delivery systems. Such systems feature DNA complexed to lipid, protein, peptide or polymeric carriers with ligands allowing in vivo tissue targeting by the complex and nuclear translocation of the exogene. Nonviral gene carrier systems are discussed together with strategies of destroying cancer cells.
EN
The study aimed to check the effectiveness of anticancer therapy combining a vascular-disruptive drug (combretastatin phosphate, CA4P) and a liposomal formulation of a chemotherapeutic (doxorubicin). CA4P was synthesized in our laboratory according to a previously described procedure. The antivascular drug and long-circulating doxorubicin-loaded liposomes were used to treat B16-F10 murine melanoma experimental tumors. Seventy-four hours after drug administration, a decrease in the number of tumor blood vessels was apparent and necrotic areas within tumors were visible. Combination therapy consisting of alternate administrations of CA4P and liposomal doxorubicin yielded greater inhibition of tumor growth than monotherapies alone. The best therapeutic results were obtained with the antivascular drug administered intratumorally every second day at 50 mg/kg body mass. In the case of combined therapy, the best results were obtained when the vascular-disruptive agent (CA4P) and the antineoplastic agent (liposomal doxorubicin) were administered in alternation.
EN
Growth of tumors is strongly dependent upon supply of nutrients and oxygen by de novo formed blood vessels. Inhibiting angiogenesis suppresses growth of primary tumors as well and affects development of metastases. We demonstrate that recombinant MBP/vasostatin fusion protein inhibits proliferation of endothelial cells in vitro. The therapeutic usefulness of such intratumorally delivered recombinant protein was then assessed by investigating its ability to inhibit growth of experimental murine melanomas. In the model of B16-F10 melanoma the MBP/vasostatin construct significantly delayed tumor growth and prolonged survival of treated mice. A combination therapy involving MBP/vasostatin construct and cyclophosphamide was even more effective and led to further inhibition of the tumor growth and extended survival. We show that such combination might be useful in the clinical setting, especially to treat tumors which have already formed microvessel networks.
EN
One of the preconditions of effective anticancer therapy is efficient transfer of the therapeutic agent (chemotherapeutic) to tumor cells. Fundamental barriers making drug delivery and action difficult include underoxygenation, elevated interstitial pressure, poor and abnormal tumor blood vascular network and acidic tumor milieu. In this study we aimed at developing an optimized scheme of administering a combination of an angiogenesis-inhibiting drug (vasostatin) and a chemotherapeutic (cyclophosphamide) in the therapeutic treatment of mice bearing experimental B16-F10 melanoma tumors. We report that the strongest tumor growth inhibition was observed in mice that received two, three or four vasostatin doses in combination with one injection of cyclophosphamide (i.e., V2 + CTX, V3 + CTX or V4 + CTX schemes). Double administration of vasostatin increases oxygenation of B16-F10 tumors. On the other hand, its five-fold administration lowers tumor oxygenation, breaks down tumor vascular network (increasing hypoxia) and leads in consequence to death of cancer cells and appearance of necrotic areas in the tumor. A decreased cyclophosphamide dose in combination with two doses of vasostatin (V2 + CTX scheme) inhibits tumor growth similarly to a larger dose of cyclophosphamide alone.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.