Suppose that C is a nonempty bounded closed and a convex subset of a Hilbert space H and T: C -> C is k-lipschitzian or uniformly k-lipschitzian mapping which has the property that, for some n > 1, Tn is the identity. The author determines a function ko(n) > 1 such that for k < ko(n) mapping T has a fixed points in C.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this paper is to give some conditions providing existence of fixed points for k-lipschitzian and uniformly k-lipschitzian mappings which are n-rotative with n ≥ 2 in complete metric spaces of hyperbolic type.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we study the problem of existence of fixed points of k-Lipschitzian and uniformly k-Lipschitzian mappings (k > 1) denned on nonempty closed convex subset of Banach space. Using very simple method we extend Kirk and Linhart's result [5, 8] in the case of involution of order n = 3.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.