Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 26, no. 3
art. no. 186537
EN
Under working conditions, since the remaining useful life (RUL) prediction of lithium-ion battery is subject to uncertainties of random charging and discharging, and infeasibility of battery capacity test, a fusion model based RUL prediction method was proposed. First, the feature learning method of lithium-ion batteries was developed by synthesizing manual extraction and one-dimensional convolutional neural network (1DCNN) extraction. Then, a fused method was proposed to estimate the historical available capacity through exploring the spatial and temporal relationship of features, and the long short-term memory (LSTM) network model was adopted for predicting the RUL of lithium-ion battery. The proposed method was verified through the comparison of differentmethods, and the results show that it can realize highly precise and stable capacity estimation and RUL prediction under working conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.