Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The “hoped for” reduction in the use of antibiotics in pig by EU producers has not been materialized as they are still being widely used for the control of enteric infectious diseases. This practice can spread antibiotic resistance in the farm environment and poses a threat to consumer health. Whilst it is widely recognized that a diversified gastro-intestinal tract (GIT) microbiota is essential for optimal health and performance, the underlying factors favoring the development and maintenance of a balanced intestinal microbiota are not fully understood. PiGutNet will establish the first European network focused on this topic, joining specialists in all research areas. It will define both environmental and host genetic factors affecting the GIT microbiota and the complex interactions between microbiota and gut maturation, to maintain a healthy gut throughout life. The network will coordinate databases and unravel innovative tools to define the status of intestinal eubiosis in pigs. The most important outcomes will be genome/metabolome-wide association studies and the provision of a road map to increase pig resistance against GIT infections. This will have an important translational potential, being the foundation for European companies to develop strategies in the areas of feed additives and animal husbandry, resulting in improved animal health and welfare, consumer protection and competitive advantage for the European agriculture.
EN
Iron (Fe) is ubiquitous in the environment and has possible impact on quality and safety of feed and food due to the fact that it can be transferred from soil to animal feed and further to the products of animal origin. Therefore, the objective of the present study was to evaluate the effect of contamination of forage with soil differing in Fe concentration on Fe solubility, mineral composition and quality of grass silages. Furthermore, the effect of feeding these silages on feed intake, performance, trace element absorbability and carry-over into edible tissues was tested in young goats. Two ensiling experiments revealed that treating grass without or with different levels and types of soil before ensiling did not affect fermentation parameters of silages. Nevertheless, the addition of soil caused a highly significant increase of crude ash and trace elements contents in forage and silages. During ensiling, the in vitro solubility of Fe increased on average 5 times. Also, the aluminium content was the best indicator of soil contamination in forages. In a feeding trial with growing goats, feed intake and live weight gain were decreased in the group fed grass ensiled with the soil in contrast to the control group and animals receiving feed with soil added just before feeding. Fe concentration was highest in the duodenal tissue of kids fed the forage contaminated with soil before ensiling (184 vs 88–80 mg Fe/kg DM in the other two treatments), which might be also an indicator of Fe regulating properties. Fe concentration in the liver increased likewise. In conclusion, data indicate that ingesting ensiled soil impairs animal performance.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.