Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The characteristic of nano sized particles mass flux conditions are engaged in this investigation. Here we assume that the nano sized particle flux is zero and the nano sized particle fraction arranged itself on the boundary layer. With this convincing and revised relation, the features of Buongiorno relation on three-dimensional flow of Carreau fluid can be applied in a more efficient way. The governing partial differential equations of continuity, momentum, energy and concentration equations which are transmitted into set of pair of nonlinear ordinary differential equations utilizing similar transformations. The numeric solutions are acquired by engaging the bvp4c scheme, which is a finite-difference code for solving boundary value problems. A parametric study is accomplished to demonstrate the impact of Prandtl number, Weissenberg numbers, radiation parameter, chemical reaction parameter, thermophoresis parameter, Brownian motion parameter and Lewis number on the fluid velocity, temperature and concentration profiles as well skin friction coefficient, Nusselt number and Sherwood number within the boundary layer. From this we find the way in which magnetic parameter contributes to the increase in local skin fraction, and the decrease in the Nusselt and Sherwood numbers in these cases. The effects of the velocity temperature and concentration profile are obtained and presented graphically.
EN
This work aims to study the combined effects of concentration and thermal radiation on a steady flow of Jeffrey nanofluid under the Darcy-Forchheimer relation over a flat nonlinear stretching sheet of variable thickness. A varying magnetic field influences normal to the flow movement is considered to strengthen the Jeffery nanofluid conductivity. However, a little effect of the magnetic Reynolds number is assumed to eliminate the impact of the magnetic field range. The higher-order nonlinear partial differential equations (PDEs) and convective boundary conditions are transformed into nonlinear ordinary differential equations (ODEs) by applying corresponding transformations. Then the ODEs are numerically solved with Runge-Kutta method via shooting technique. This process is applied for convergent relations of nanoparticle temperature, concentration, and velocity distributions. The influence of different fluid parameters like thermophoresis, melting parameter, Deborah number, chemical reaction parameter, Brownian motion parameter, inertia parameter and Darcy number on the flow profiles is explained through graphical analysis. Thermal radiation is emitted by accelerated charged particles, and the enhanced particle motion at higher temperatures causes a more significant discharge of radiation. Also, it was concluded that the heat generation parameter enhances the momentum boundary layer thickness and reduces the thermal and solutal boundary layer thickness over a Jeffrey nanofluid.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.