Advances in cybersecurity are crucial for a country's economic and national security. As data transmission and storage exponentially increase, new threat detection and mitigation techniques are urgently needed. Cybersecurity has become an absolute necessity, with the ever-increasing transmitted networks from day to day causing exponential growth of data that is being stored on servers. In order to thwart sophisticatedattacks in the future, it willbe necessary to regularly update threat detection and data preservation techniques. Generative adversarial networks (GANs) are a class of unsupervised machine learning models that can generate synthetic data. GANs are gaining importance in AI-based cybersecurity systems for applications suchas intrusion detection, steganography, cryptography, and anomaly detection. This paper provides a comprehensive review of research on applying GANs for cybersecurity, including an analysis of popular cybersecurity datasets and GAN model architectures used in these studies.
PL
Postępy w cyberbezpieczeństwie mają kluczowe znaczenie dla bezpieczeństwa gospodarczego i narodowego kraju. Ponieważ transmisja i przechowywanie danych gwałtownie rośnie, pilnie potrzebne są nowe techniki wykrywania i łagodzenia zagrożeń. Cyberbezpieczeństwo stało się absolutną koniecznością, ponieważ stale rosnąca liczba przesyłanych sieci z dnia na dzień powoduje wykładniczy wzrost danych przechowywanych na serwerach. Aby w przyszłości udaremnić wyrafinowane ataki, konieczna będzie regularna aktualizacja technik wykrywania zagrożeń i zabezpieczania danych. Generatywne sieci przeciwstawne (GAN) to klasa modeli uczenia maszynowego bez nadzoru, które mogą generować dane syntetyczne. Sieci GAN zyskują na znaczeniu w systemach cyberbezpieczeństwa opartych na sztucznej inteligencji do zastosowań takich jak wykrywanie włamań, steganografia, kryptografia i wykrywanie anomalii. W artykule dokonano kompleksowego przeglądu badań nad zastosowaniem sieci GAN do celów cyberbezpieczeństwa, w tym analizę popularnych zbiorów danych dotyczących cyberbezpieczeństwa oraz architektur modeli GAN wykorzystanych w tych badaniach.
In contemporary times, the preservation of scientific and creative endeavours often relies on the utilization of film and image archives, hence emphasizing the significance of image processing as a critical undertaking. Image inpainting refers to the process of digitally altering an image in a manner that renders the adjustments imperceptible to a viewer lacking knowledge of the original image. Image inpainting is a technique mostly employed to restore damaged regions within an image by utilizing information obtained from matching characteristics in relevant images. This process involves filling in the damaged areas and removing undesired objects. The SURF (Speeded Up Robust Feature) algorithm under consideration is partitioned into three primary phases. Firstly, the essential characteristics of the impaired image and the pertinent image are identified. In the second stage, the relationship between the damaged image and the relevant image is determined in terms of translation, scaling, and rotation. Ultimately, the destroyed area is reconstructed through the application of the inverse transformation. The quality assessment of inpainted images can be evaluated using metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error (MSE). The experimental findings provide evidence that the suggested inpainting technique is effective in terms of both speed and quality.
PL
We współczesnych czasach utrwalanie dorobku naukowego i twórczego często opiera się na wykorzystaniu archiwów filmowych i obrazowych, co podkreśla znaczenie przetwarzania obrazu jako przedsięwzięcia krytycznego. Inpainting odnosi się do procesu cyfrowej zmiany obrazu w sposób, który sprawia, że korekty są niezauważalne dla widza nie znającego oryginalnego obrazu. Inpainting to technika stosowana najczęściej w celu przywracania uszkodzonych obszarów obrazu poprzez wykorzystanie informacji uzyskanych na podstawie dopasowania cech odpowiednich obrazów. Proces ten polega na wypełnieniu uszkodzonych obszarów i usunięciu niepożądanych obiektów. Rozważany algorytm SURF (Speeded Up Robust Feature) dzieli się na trzy główne fazy. Po pierwsze, identyfikowane są podstawowe cechy obrazu zaburzonego i obrazu istotnego. W drugim etapie określa się relację pomiędzy obrazem uszkodzonym a obrazem odpowiednim pod względem translacji, skalowania i rotacji. Ostatecznie zniszczony obszar rekonstruuje się poprzez zastosowanie transformacji odwrotnej. Ocenę jakości renowacji obrazów można ocenić za pomocą wskaźników, takich jak wskaźnik podobieństwa strukturalnego (SSIM), szczytowy stosunek sygnału do szumu (PSNR) i błąd średniokwadratowy (MSE). Wyniki eksperymentów dostarczają dowodów na to, że sugerowana technika renowacji jest skuteczna zarówno pod względem szybkości, jak i jakości.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.