Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present project utilizes a straightforward, inexpensive, and environmentally friendly approach to produce Titanium dioxide nanoparticles utilizing Zizyphus Spina-Christi leaves (Z-TiO2). Ultra-Spectrophotometry (UV-Vis) was used to characterize the synthesized nanoparticles, which showed the production of nanoparticles at 320 nm absorbance. To investigate functional groups, Fourier Transform Infrared Spectroscopy (FTIR) has been used. The presence of Titanium Dioxide was verified using Energy Distribution X-ray Spectroscopy (EDS). Surface area is calculated using the Brunauer Emmett Teller (BET) formula. Images from Field Emission Electron Microscopy (FE-SEM) verified the nanoparticles' spherical shape and relatively homogenous size distribution. These findings demonstrated that the production of Z-TiO2 nanoparticles was successful.
EN
The response surface method was applied to optimize operational factors in the solar photocatalytic process on the removal of Amoxicillin (AMOX) residues from aqueous solution using TiO2 immobilized on the sand as a catalyst. The results reveal that the degradation percentage of AMOX is 93.12%, when optimal conditions of pH=5, 75 mg/l of TiO2, 400 mg/l of H2O2, and 10 mg/l of AMOX concentration at 150 min irradiation time were used. Furthermore, the model’s expected response results have reasonable similarity with the actual data (R2 = 93.58%), demonstrating the efficiency of this method in making an accurate prediction. A second-order polynomial multiple regression model was used to evaluate the responses, which confirms that was a satisfactory adjustment with the achieved data through analysis of variance (R2 = 93.58%, R2adj = 91.48% and R2pred =89.68%). In addition, it is observed that the removal of undesirable compounds follows a pseudo-2nd order kinetic model with R2 = 0.9862. In conclusion, with the ease of usage of immobilized TiO2 and good photocatalytic efficiency, the findings showed the potential application to the antibiotics from an aqueous solution.
EN
This study goal to the ability of using low cost materials representing thermestone and aluminum solid wastes in water filtration by using a pilot plant constructed in wastewater treatment plant to remove cadmium ions (Cd(II)). Response Surface Methodology (RSM) used to optimize the optimal parameters that affecting the performance of filter units, these parameters are time, Cd(II) concentration, and filtration rate. These optimized parameters were 9 hr., 5 ppm, 10 l/hr. with removal efficiency of Cd(II) for A-Filter, T-Filter, S-Filter, and A-T-S-Filter was 94%, 95%, 86.8% and 90%, respectively. The result shows that the T-filter has higher cadmium removal efficiency than A-filter, S-filter and S-T-A- filter. While A-filter has a higher removal efficiency of cadmium than the S-filter and S-T-A- filter. While the S-T-A- filter has higher efficiency than S- filter. The result obtained from RSM was good Agreement with the result of experiments. As a result, the optimized process in this paper can be widely utilized with high removal ratio of Cd(II) ions from wastewater samples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.