In this paper, we study the rate of approximation for the nonlinear sampling Kantorovich operators. We consider the case of uniformly continuous and bounded functions belonging to Lipschitz classes of the Zygmund-type, as well as the case of functions in Orlicz spaces. We estimate the aliasing errors with respect to the uniform norm and to the modular functional of the Orlicz spaces, respectively. The general setting of Orlicz spaces allows to deduce directly the results concerning the rate of convergence in Lp-spaces, 1 ≤ p < ∞, very useful in the applications to Signal Processing. Others examples of Orlicz spaces as interpolation spaces and exponential spaces are discussed and the particular cases of the nonlinear sampling Kantorovich series constructed using Fejér and B-spline kernels are also considered.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.