W pracy przedstawiono wyniki badań dwóch gatun-ków staliwa (oznaczonych dalej jako Stop 1 oraz Stop 2). Stop 1 zawiera między innymi: 0,25% C, 11,5% Al, 5,85% Cr, 1,97% Mo. W przypadku Stopu 2 zawartość węgla wynosiła 0,035%, natomiast aluminium 13,5%, pierwiastki takie, jak: Cr, Ni, Sb, B, nie przekroczyły 1% udziału w składzie chemicznym tego stopu. Badania rezystywności Stopu 1 przeprowadzono podczas badania odporności na zmęczenie cieplne, natomiast Stop 2 badano na przygotowanym stanowisku, realizując pomiar rezystancji metodą czteropunktową.Dla Stopu 1 przeprowadzono pomiary rezystancji w funkcji czasu, wydłużenia oraz temperatury. Dla porównania przedstawiono wyniki badań innych stopów badanych na tym stanowisku w ramach realizacji innych prac B+R.Korzystając z materiału uzyskanego podczas badania lejności Stopu 2, określono wpływ warunków krzepnięcia na rezystywność. Przedstawiono wyniki badań kalorymetrycznych tego stopu, określając temperaturę przemian fazowych dla różnych warunków krzepnięcia Stopu 2.
EN
The paper presents the results of investigations of two cast steel grades (further referred to as Alloy 1 and Al-loy 2). Alloy 1 contains, among others, 0.25% C, 11.5% Al, 5.85% Cr, 1.97% Mo, in Alloy 2 was obtained 0.035% C, 13.5% Al, elements such as Cr, Ni , Sb, B, did not exceed 1% share in the chemical composition of this alloy. Resistivity tests of Alloy 1 were carried out during the test of resistance to thermal fatigue, while Alloy 2 was tested on a prepared test stand and the resistance was measured using a four-point method.For Alloy 1, the resistance was measured as a function of time, elongation and temperature. For comparison, the results of tests of other alloys conducted on this stand within the framework of other R&D works are presented.Using the material obtained during the test for castability of Alloy 2, the influence of solidification conditions on resistivity was determined. The results of calorimetric tests of this alloy are presented, determining the phase transition temperature for various solidification conditions of Alloy 2.
The article presents the developed IT solutions supporting the material and technological conversion process in terms of the possibility of using the casting technology of selected alloys to produce products previously manufactured with the use of other methods and materials. The solutions are based on artificial intelligence, machine learning and statistical methods. The prototype module of the information and decision-making system allows for a preliminary assessment of the feasibility of this type of procedure. Currently, the selection of the method of manufacturing a product is based on the knowledge and experience of the technologist and constructor. In the described approach, this process is supported by the proprietary module of the information and decision-making system, which, based on the accumulated knowledge, allows for an initial assessment of the feasibility of a selected element in a given technology. It allows taking into account a large number of intuitive factors, as well as recording expert knowledge with the use of formal languages. Additionally, the possibility of searching for and collecting data on innovative solutions, supplying the knowledge base, should be taken into account. The developed and applied models should allow for the effective use and representation of knowledge expressed in linguistic form. In this solution, it is important to use methods that support the selection of parameters for the production of casting. The type, number and characteristics of data have an impact on the effectiveness of solutions in terms of classification and prediction of data and the relationships detected.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.