Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper is designed to deal with the convergence and stability analysis of impulsive Caputo fractional order difference systems. Using the Lyapunov functions, the Z-transforms of Caputo difference operators, and the properties of discrete Mittag-Leffler functions, some effective criteria are derived to guarantee the global convergence and the exponential stability of the addressed systems.
EN
A novel flow injection chemiluminescence (CL) system for determination of polyhydroxy phenols, including phloroglucinol, pyrogallol, resorcinol and pyrocatechol has been described. The system utilises CL reaction of ferricyanide with polyhydroxy phenols in sodium hydroxide media sensitised by the fluorescent dye Rhodamine B. The proposed procedure has a linear range of 0.05-5.0 ng ml/' for phloroglucinol, and 0.01-1.0 ug mL(-1) for pyrogallol, resorcinol and pyrocatechol. The method is sensitive, simple, and fast. The chemiluminescence reaction mechanism has been also proposed and briefly discussed.
PL
Opisano nową metodę analizy wstrzykowej z wykorzystaniem chemiluminescencji (CL) do oznaczania wielowodorotlenowych fenoli, włączając w to floroglucynę, pirogalol, rezor-cynę i pirokatechinę. Metoda jest oparta na chemiluminescencyjnej reakcji żelazocyjanku z fenolami wielowodorotlenowymi w środowisku wodorotlenku sodowego, sensybilizowanej za pomocą fluorescencyjnego barwnika rodaminy B. Procedura charakteryzuje się liniowym zakresem oznaczania: 0,05-5,0ug mL(-1) dla floroglucyny oraz 0,01-1,0 ug mL(-1) dla piro-galolu, rezorcyny i pirokatechiny. Metoda jest czuła, prosta i szybka. Przedsykutowano pokrótce możliwy mechanizm reakcji chemiluminescencyjnej.
EN
Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME) systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR) and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF) risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system
EN
Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME) systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR) and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF) risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.
EN
Soil microbial communities play a vital role in soil carbon and carbon sequestration in forest ecosystems. In this study, soils were sampled in Tianbaoyan National Nature Reserve in southeastern China from four Nothotsuga longibracteata forests, including a pure N. longibracteata forest (NF), N. longibracteata + hardwood mixed forest (NHF), N. longibracteata + Rhododendron simiarum mixed forest (NRF), and N. longibracteata + Phyllostachys pubescens mixed forest (NPF). Our objective was to precisely quantify soil physicochemical properties, microbial biomass, microbial communities, and to evaluate their interrelationships. We used biochemical measurements, a fumigation-extraction method, and phospholipid fatty acid (PLFA) analysis method to show that – except for pH and soil bulk density (SBD) – soil physicochemical properties differed markedly among the forest types. Microbial biomass carbon (MBC) and nitrogen (MBN) were highest in NHF soils, while the ratio of microbial biomass carbon to nitrogen (MBC:MBN) was highest in NRF and NPF soils. Moreover, the microbial communities of the four forest types exhibited distinct profiles: the highest total PLFA content and content of Grampositive bacteria (Gram(+)), Gram-negative bacteria(Gram(-)), and fungi were found in NRF. Additionally, NHF soil exhibited the highest actinomycetes content, while the highest protozoal content was found in NF soil. The analysis of individual PLFAs using principal component analysis (PCA) demonstrated a clear association of distinct soil PFLA characteristics for each forest type. In conclusion, the soil microbial community structure can be significantly influenced by changes in soil organic carbon (SOC) and MBN. Comparing soil microbial properties in different N. longibracteata forests can help us understand the influence of forest types on the structure of microbiota within a system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.