In this paper, a new approach of signal processing for breath prediction pattern recognition is proposed and further analyses are presented. In order to extract key values from raw data, a shift from time domain to phase space has been utilized. It helped to achieve clearer peak-to-peak measurements which are crucial for breath prediction pattern recognition. Based on a special software tool for breath prediction pattern recognition several different algorithms have been compared. As a result, a reduction in error rate can be achieved when applying a new signal processing approach in comparison to the previous designs.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.