Proper operation of railway vehicles is the basis for the functioning of a safe railway system. At the same time, it is not possible to talk about the safe use of a vehicle without adequately carried out maintenance processes. Due to legislative changes in August 2017, the maintenance system of railway vehicles has changed significantly. In most cases, it is the entities responsible for maintenance that are fully liable for the shape of the maintenance documentation, not the national security authority (in Poland the President of the Rail Transport Office) as has been the case so far. That is a big challenge for everyone involved in maintaining railway vehicles. The article presents the system of maintenance of railway vehicles as critical for the railway system safety, with the division into those registered in the National Railway Register and the unregistered ones. National and EU requirements for maintenance systems as well as the conditions for the implementation of "changes" in these systems have been presented, based, among others, on the results of the risk assessment of the threats they generate.
PL
Prawidłowa eksploatacja pojazdów kolejowych jest podstawą funkcjonowania bezpiecznego systemu kolejowego. Jednocześnie nie można mówić o bezpiecznym użytkowaniu pojazdu bez prawidłowego przeprowadzenia procesów utrzymaniowych W związku ze zmianami legislacyjnymi w sierpniu 2017 r. system utrzymania pojazdów kolejowych uległ istotnym zmianom. W większości przypadków to na podmiotach odpowiedzialnych za utrzymanie spoczęła pełna odpowiedzialność za kształt dokumentacji utrzymaniowej, nie zaś na krajowej władzy bezpieczeństwa (w przypadku Polski na Prezesie Urzędu Transportu Kolejowego), jak było do tej pory. To duże wyzwanie dla wszystkich zajmujących się utrzymywaniem pojazdów kolejowych. Artykuł przedstawia krytyczny dla bezpieczeństwa systemu kolejowego system utrzymania pojazdów kolejowych, z podziałem na pojazdy zarejestrowane w Krajowym Rejestrze Pojazdów Kolejowych i niezarejestrowane. Zaprezentowano wymagania krajowe i unijne dla systemów utrzymania, jak również warunki wdrażania „zmian” w tych systemach, oparte m.in. na wynikach oceny ryzyka generowanych przez nie zagrożeń.
Railway crossings are included in transport infrastructure designated by junction of railway lines with public roads, which are crossed on the level of rails. At railway crossings numerous hazards of losses/damages and harms to people and objects - participants of land transport are generated. For the requirements of risk management at railway crossings, RC-RISK method (Railway Crossing - Risk) has been worked out. This method is the implementation of the integrated TRANS-RISK method of risk management in transport. This article presents the model of railway crossings as areas of analyses in RC-RISK method. The model of railway crossing in RC-RISK method is a result of implementation of the rules of accepted formal scheme of description of railway crossing. This paper presents this formal scheme of description identifying railway crossings. General and particular rules of identification of elements of the model of railway crossings are also presented. Created model consists of 13 fields considering selected legal, technical and local conditions of the operation of railway crossings. The Poznań Railway Junction is presented. This junction includes 39 railway crossings and passages. On the basis of the railway crossing located in Krzesiny Street, the application of the model as areas of analyses of hazard risk management with RC-RISK method is presented on the basis of the railway crossing in Krzesiny Street.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
F-16 is the most advanced aircraft in the Polish Air Forces. It has been equipped with the very modem, sophisticated and advanced turbofan engine F100-PW-229. Due to the fact, that there is only one engine, its reliability, durability, efficiency and performance are the crucial factors for the safety reasons. First time in the history of the Polish Air Forces 31st Tactical Air Force Base Poznań-Krzesiny received capabilities to perform engine and engine components repairs at the base level. Military technicians responsible for this task must be aware of the hazards concerned with the engine maintenance processes. In the article authors researched maintenance system of the FI00 turbofan engines. For the study purposes authors of this article created maintenance risk model for the maintenance activities on the turbofan jet engine. On the example of one maintenance task authors presented risk management process comprising hazards identification, hazards formulation, risk assessment and risk mitigation. As a result of the risk assessment authors proposed risk mitigating factors. The main goal of this article was to provide clues and guidelines for the maintenance key personnel how to assess and manage risk during engine repairs and overhauls processes.
PL
W pracy obszarem rozważań autorów jest system utrzymania silników turbinowych F100 samolotów wielozadaniowych F-16. Zbudowano model systemu utrzymania silników turbinowych oraz procesów w nim realizowanych. Dla przyjętej domeny analiz, dla wybranego przykładowego zadania realizowanego w ramach systemu utrzymania silników FI00, zaprezentowano procedury: przygotowywania narzędzi do rozpoznawania źródeł zagrożeń, rozpoznawania źródeł zagrożeń, grupowania źródeł zagrożeń i formułowania zagrożeń. Podano końcowe efekty procesu identyfikacji zagrożeń w postaci ich charakterystyk, na które składają się: grupa źródeł zagrożenia, sformułowanie zagrożenia, przewidywane straty / szkody będące wynikiem aktywizacji zagrożenia. W rezultacie przeprowadzonego procesu szacowania ryzyka zaproponowano działania zmierzające do złagodzenia ryzyka zagrożeń. Głównym celem artykułu było przedstawienie wskazówek oraz metodyki postępowania dla personelu zarządzającego systemem utrzymania silników samolotów F-16 w zakresie zarządzania ryzykiem w trakcie wykonywania napraw i remontów silników.
The issue of managing the risk associated with introducing changes to the railway system is very important from the point of view of safety management, as any change can significantly reduce the level of safety of a railway system. For this reason, such changes are regulated at the European Union (EU) level through a dedicated legal act known as the Common Safety Method for risk assessment (CSM). The example presented in this paper is a portion of the analysis carried out for an Estonian freight carrier with a bowtie method, which we improved so that it fully complies with the CSM requirements. This analysis concerns a change consisting of allowing the possibility of a freight train being driven by one person (with no assistant driver). The case study presented in the paper, although limited due to confidentially issues, allows a full description of how to use the proposed method in real-world applications.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.