Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2018
|
tom S 3
68--77
EN
In this study, a methodology was presented to predict density stratified flows in the near-field of submerged bodies. The energy equation in temperature form was solved coupled with momentum and mass conservation equations. Linear stratification was achieved by the definition of the density as a function of temperature. At first, verifications were performed for the stratified flows passing a submerged horizontal circular cylinder, showing excellent agreement with available experimental data. The ability of the method to cope with variable density was demonstrated. Different turbulence models were used for different Re numbers and flow states. Based on the numerical methods proposed in this paper, the stratified flow was studied for the real scale benchmark DAPRA Suboff submarine. The approach used the VOF method for tracing the free surface. Turbulence was implemented with a k − ω based Detached Eddy Simulation (DES) approach. The effects of submarine speed, depth and density gradient on the free surface wave pattern were quantitatively analyzed. It was shown that, with the increasing of the speed of the submarine, the wavelength and wave height of the free surface wave were gradually increasing. The wave height of the free surface wave was gradually reduced as the submarine’s depth increased. Relative to the speed and submarine depth, the changes of the gradient density gradient have negligible effects on the free surface wave field.
EN
In this study, a methodology was presented to predict density stratified flows in the near-field of submerged bodies. The energy equation in temperature form was solved coupled with momentum and mass conservation equations. Linear stratification was achieved by the definition of the density as a function of temperature. At first, verifications were performed for the stratified flows passing a submerged horizontal circular cylinder, showing excellent agreement with available experimental data. The ability of the method to cope with variable density was demonstrated. Different turbulence models were used for different Re numbers and flow states. Based on the numerical methods proposed in this paper, the stratified flow was studied for the real scale benchmark DAPRA Suboff submarine. The approach used the VOF method for tracing the free surface. Turbulence was implemented with a k − ω based Detached Eddy Simulation (DES) approach. The effects of submarine speed, depth and density gradient on the free surface wave pattern were quantitatively analyzed. It was shown that, with the increasing of the speed of the submarine, the wavelength and wave height of the free surface wave were gradually increasing. The wave height of the free surface wave was gradually reduced as the submarine’s depth increased. Relative to the speed and submarine depth, the changes of the gradient density gradient have negligible effects on the free surface wave field
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.