In this paper, we study the rate of approximation for the nonlinear sampling Kantorovich operators. We consider the case of uniformly continuous and bounded functions belonging to Lipschitz classes of the Zygmund-type, as well as the case of functions in Orlicz spaces. We estimate the aliasing errors with respect to the uniform norm and to the modular functional of the Orlicz spaces, respectively. The general setting of Orlicz spaces allows to deduce directly the results concerning the rate of convergence in \(L^p\)-spaces, \(1 \miu p\) < \(\infty\), very useful in the applications to Signal Processing. Others examples of Orlicz spaces as interpolation spaces and exponential spaces are discussed and the particular cases of the nonlinear sampling Kantorovich series constructed using Fej\'er and B-spline kernels are also considered.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We obtain modular convergence theorems in modular spaces for nets of operators of the form $(T_wf)(s) = ∫_{H} K_w (s - h_w(t),f(h_w(t))) dμ_H(t)$, w > 0, s ∈ G, where G and H are topological groups and ${h_w}_{w>0}$ is a family of homeomorphisms $h_w :H → h_w (H) ⊂ G.$ Such operators contain, in particular, a nonlinear version of the generalized sampling operators, which have many applications in the theory of signal processing.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let G be a locally compact Hausdorff group with Haar measure, and let L⁰(G) be the space of extended real-valued measurable functions on G, finite a.e. Let ϱ and η be modulars on L⁰(G). The error of approximation ϱ(a(Tf - f)) of a function $f ∈ (L⁰(G))_{ϱ+η} ∩ Dom T$ is estimated, where $(Tf)(s) = ∫_G K(t-s,f(t))dt$ and K satisfies a generalized Lipschitz condition with respect to the second variable.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.