This paper focuses on the Diophantine equation $xⁿ+p^{α}yⁿ = Mz³$, with fixed α, p, and M. We prove that, under certain conditions on M, this equation has no non-trivial integer solutions if $n ≥ ℱ(M,p^{α})$, where $ℱ(M,p^{α})$ is an effective constant. This generalizes Theorem 1.4 of the paper by Bennett, Vatsal and Yazdani [Compos. Math. 140 (2004), 1399-1416].
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider the Diophantine equation $(x+y)(x²+Bxy+y²) = Dz^{p}$, where B, D are integers (B ≠ ±2, D ≠ 0) and p is a prime >5. We give Kraus type criteria of nonsolvability for this equation (explicitly, for many B and D) in terms of Galois representations and modular forms. We apply these criteria to numerous equations (with B = 0, 1, 3, 4, 5, 6, specific D's, and p ∈ (10,10⁶)). In the last section we discuss reductions of the above Diophantine equations to those of signature (p,p,2).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.