Activated leukocyte cell adhesion molecule (ALCAM) belongs to the immunoglobulin cell adhesion molecule super family. ALCAM is implicated in tumor progression, inflammation, and the differentiation of hematopoietic stem cells. Hitherto, the identity of regulatory DNA elements and cognate transcription factors responsible for ALCAM gene expression remained unknown. In this report, the human ALCAM promoter was cloned and its transcriptional mechanisms elucidated. The promoter is TATA-less and contains multiple GC-boxes. A proximal 650-bp promoter fragment conferred tissue-independent activation, whereas two contiguous regions upstream of this region negatively influenced promoter activity in a tissue-specific manner. The positive regulatory promoter region was mapped to a core 50 base pair sequence containing a conical Sp1 element. Mutation analysis revealed that this element alone or in tandem with elements immediately upstream was required for maximal promoter activity. Chromatin analysis revealed that Sp1 binds exclusively to the canonical binding sequence in vivo, but not to DNA sequence immediately upstream. Finally, we showed that over-expression of Sp1 significantly increased the basal promoter activity. Thus, Sp1 activated the ALCAM promoter in most cells. These findings have important ramifications for unraveling the roles of ALCAM in inflammation and tumorigenesis.
The particle of calcareous sands was forced to crush, then the energy from the crushing was released by the form of sound waves. Therefore the AE technique was used to detect the calcareous sands AE signal when it crushed. by to study the AE characteristics, the mechanics of calcareous sands was studied. Study showed that: (1) there was the AE activities on the low confining pressure condition at the beginnig of test, (2) there was more and more AE activities with the continuing of test until to the end, (3) the calcareous sands’ AE activities was on the whole testing, (4) the calcareous sands’ particle crushing and mutual friction played different roles for its AE activities. Then the AE model based on the calcarous sands’ particle crushing was discussed.
The particle of calcareous sands was forced to crush, then the energy from the crushing was released by the form of sound waves. Therefore the AE technique was used to detect the calcareous sands AE signal when it crushed. by to study the AE characteristics, the mechanics of calcareous sands was studied. Study showed that: (1) there was the AE activities on the low confining pressure condition at the beginnig of test, (2) there was more and more AE activities with the continuing of test until to the end, (3) the calcareous sands’ AE activities was on the whole testing, (4) the calcareous sands’ particle crushing and mutual friction played different roles for its AE activities. Then the AE model based on the calcarous sands’ particle crushing was discussed
Rye (Secale cereale L.) chromosome arm 1RS could delay leaf senescence, and change in H₂O₂ content is a useful index for weighing the ability to delay the senescence. Two wheat cultivars, Chuannong12 (CN12) and Chuannong 18 (CN18), harboring the wheat–rye 1BL/1RS translocated chromosome were investigated for H₂O₂ change and physiological index after flowering under field conditions, and MY11, the agronomical parent of both CN12 and CN18, was used as the control. A combined change in the peak value of CdSe/ZnS quantum dot (QD) fluorescence and morphological observation indicated that the H₂O₂ contents in CN12 and CN18 were generally lower than that in MY11. They both had higher values for net photosynthetic rate (Pn), stomatal conductance (Gs), Fv/F'm F'v/F'm, and photochemical quenching of PSII (qP) than MY11 only in the late measurement stage. Some small differences were also observed, such as CN12 and CN18 wheat cultivars having higher and longer photosynthetic competence than MY11 during the grain filling stage, which perhaps resulted from a mechanism for removing oxidative species, especially H₂O₂.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.