The quality of food is usually tested by sensing the product odor using e-nose technique.However, in a real-time testing environment, some of the employed sensors may fail tooperate, which imposes great uncertainty on the food quality assurance model. To handlethe uncertainty, a support vector machine (SVM) classifier algorithm is developed todeal with the failure sensor effect using a data imputation strategy. The proposed modelis evaluated experimentally by means of benchmark datasets, and validated in a real-time environment by programming an Arduino-UNO controller in the internet of things(IoT) environment.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.