Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Designing Model Based Classifiers by Emphasizing Soft Targets
100%
EN
When training machine classifiers, to replace hard classification targets by emphasized soft versions of them helps to reduce the negative effects of using standard cost functions as approximations to misclassification rates. This emphasis has the same kind of effect as sample editing methods, that have proved to be effective for improving classifiers performance. In this paper, we explore the effectiveness of using emphasized soft targets with generative models, such as Gaussian MixtureModels (GMM), and Gaussian Processes (GP). The interest of using GMMis that they offer advantages such as an easy interpretation and straightforward possibilities to deal with missing values. With respect to GP, if we use soft targets, we do not need to resort to any complex approximation to get a Gaussian Process classifier and, simultaneously, we can obtain the advantages provided by the use of an emphasis. Simulation results support the usefulness of the proposed approach to get better performance and show a low sensitivity to design parameters selection.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.