The paper describes the sol-gel method for preparing nanocomposites from the TiO2-SnO2 system with various chemical compositions. The obtained nanopowders are characterized by a significantly expanded specific surface area (SSA ~ 100 m2/g), which suggests low particles agglomeration and undoubtedly has a beneficial effect on the application of the obtained nanopowders in the production of resistive sensors for gas detection. The crystallites sizes estimated with use of XRD (Dhkl ~ 8 nm) are similar to those calculated based on specific surface area measurements (DBET ~ 15 nm). Moreover, the paper examines the spectral dependence of the diffuse reflection coefficient Rdiff (λ) of the obtained nanocomposites.
PL
W pracy opisano metodę zol-żel do otrzymywania nanokompozytów z układu TiO2-SnO2 o różnym składzie chemicznym. Otrzymane nanoproszki charakteryzują się dużym rozwinięciem powierzchni właściwej (SSA ~100 m2/g), co sugeruje słabą aglomerację cząstek i niewątpliwie wpływa korzystnie na zastosowanie otrzymanych nanoproszków do wytwarzania sensorów rezystancyjnych dla wykrywania gazów. Wielkości krystalitów wyznaczone techniką XRD (Dhkl ~ 8 nm) są zbliżone do oszacowanych na podstawie pomiarów powierzchni właściwych (DBET ~ 15 nm). W pracy zbadano również spektralną zależność współczynnika odbicia dyfuzyjnego Rdiff (λ) uzyskanych nanokompozytów.
W pracy badano korelację pomiędzy strukturą i składem chemicznym a odpowiedzią sensorów na bazie nanokompozytów SnO₂/TiO₂. Materiały o różnym stosunku molowym uzyskano poprzez mechaniczne mieszanie komercyjnie dostępnych nanoproszków. Charakterystyki sensorowe dla H₂ mierzono w zakresie temperatur 200...400°C i koncentracji 50...3000 ppm, a dla NH₃ w temperaturze 500°C w zakresie koncentracji 500...4500 ppm. Najwyższe odpowiedzi uzyskano dla nanokompozytów o zawartości 50% molowych TiO₂.
EN
Correlation between structure, chemical composition and sensor response is studied. Nanocomposites of SnO₂/TiO₂ with different molar contents have been obtained by mechanical mixing of commercial nanopowders. Sensors characteristics have been recorded over temperature and gas concentration ranges of 200...400°C and 50...3000 ppm, respectively, for H₂ while detection of NH₃ has been carried out at 400°C and 500°C from 500 ppm to 4500 ppm. The highest sensor response to both hydrogen and ammonia occurs at 50 mol% TiO₂/50 mol% SnO₂.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.