Implementing new methods of detection and identification of gases using an infrared imaging Fourier-transform spectrometer is discussed in the paper. It’s focused on using a multi-function toolbox to get the best results possible. It shows how combining different methods can improve gas detection and identification on a real life example during manhole observation.
The article describes the methodologies for measuring the basic parameters of optoelectronic observation devices in accordance with applicable standards and international procedures. Noise equivalent temperature difference NETD, minimum resolvable temperature difference MRTD, detection, recognition and identification ranges according to STANAG 4347, angular field of view FOV and modulation transfer function MTF are described. The description and requirements for laboratory measuring stations are presented. The article contains an analysis of measurement uncertainty of measured quantities in accordance with ISO 17025: 2018 and JCGM 100: 2008 guide based on the TOP 6-3-040 procedure.
Measurement of methane emissions from leaks occurring on the territorially extensive network of transmission gas grid is a topical issue and highly desirable from the point of view of safety and reducing methane emissions into the atmosphere. Remote detection of methane is a problem whose technical solution is based on several types of optoelectronic devices, e.g. thermal imaging cameras with sets of optical filters, spectroradiometers, laser systems of the DIAL (DIfferential Absorption Lidar) type. On the other hand, the quantification of emission magnitudes is in most cases realized by spectoradiometric systems. This paper will present a method for analyzing hyperspectral data from an imaging Fourier infrared spectroradiometer. Measurements will be made on a purpose-built bench simulating methane emissions from a transmission network. Data obtained from ground level under different atmospheric conditions will be presented, together with the results of their analysis for different methane emissions.
PL
Pomiar emisji metanu z wycieków występujących na rozległej terytorialnie sieci gazociągów przesyłowych jest zagadnieniem aktualnym i wysoce pożądanym z punktu widzenia bezpieczeństwa i ograniczenia emisji metanu do atmosfery. Zdalna detekcja metanu jest problem, którego rozwiązanie techniczne opiera się na kilku typach urządzeń optoelektronicznych, np. kamerach termowizyjnych z zestawami filtrów optycznych kamery termowizyjne z zestawami filtrów optycznych, spektroradiometry, systemy laserowe DIAL (DIfferential Absorption Lidar). Z drugiej strony, kwantyfikacja wielkości emisji jest w większości przypadków realizowana przez systemy spektroradiometryczne. W niniejszym artykule zostanie przedstawiona metoda analizy danych hiperspektralnych z obrazującego fourierowskiego spektroradiometru podczerwieni. Pomiary zostały wykonane na specjalnie zbudowanym stanowisku symulującym emisję metanu z sieci przesyłowej. Dane uzyskane z poziomu gruntu w różnych warunkach atmosferycznych, wraz z wynikami ich analizy dla różnych emisji metanu.
Pomiar i monitorowanie parametrów fizjologicznych człowieka odgrywają ważną rolę w wielu zastosowaniach takich jak opieka zdrowotna, trening sportowy oraz zapobieganie rozprzestrzenianiu chorób. Dynamiczne zmiany parametrów fizjologicznych mogą ujawnić nie tylko zmiany stanu fizjologicznego i funkcji pacjenta, a także posłużyć do oceny stanu aktywności człowieka, jego wydolności oraz zmęczenia. Do najważniejszych parametrów fizjologicznych człowieka służących do oceny jego podstawowych funkcji życiowych, obok częstości skurczów serca, ciśnienia tętniczego, częstotliwości oddychania, należy temperatura ciała. W praktyce medycznej stosuje się różne rodzaje przyrządów pomiarowych służących do pomiaru temperatury takich jak: termometr cieczowy, termometr elektroniczny, bezdotykowe termometry douszne, bezdotykowe termometry czołowe. Termometry cieczowe i elektroniczne wymagają podłączenia do człowieka odpowiednich czujników, co może być niepożądane lub niemożliwe jak np. u noworodków lub podczas treningu sportowego. Bezdotykowe termometry działają na niewielkie odległości i często wymuszają określoną pozycję człowieka w trakcie pomiaru. Ponadto powyższe techniki pomiaru temperatury ciała wymagają bezpośredniego nadzoru personelu medycznego, co często powoduje obniżenie skuteczności i wydajność przesiewowego pomiaru temperatury. W przesiewowych pomiarach temperatury dużej liczby ludzi, w szczególności przemieszczających się dobrze sprawdza się pomiarowa kamera termowizyjna. W artykule została przedstawiona metoda pomiaru temperatury człowieka za pomocą kamery termowizyjnej. Zaprezentowana metoda charakteryzuje się z dużą dokładnością pomiaru temperatury, która umożliwia medyczne wykorzystanie uzyskanych pomiarów. Metoda pomiaru została przetestowana na stanowisku pomiarowym oraz dla wybranej próby testowej ludzi. Przeprowadzone pomiary i testy potwierdziły możliwość uzyskania dokładności pomiaru temperatury o niepewności rozszerzonej poniżej 0,05 K przy rozdzielczości poniżej 0,1 K.
EN
Measurement and monitoring of human physiological parameters play an important role in many applications such as health care, sports training and prevention of disease spread. Dynamic changes in physiological parameters can reveal not only changes in a patient’s physiological state and function, but also be used to assess a person’s activity status, fitness and fatigue. Body temperature is among the most important human physiological parameters for assessing basic vital functions, apart from heart rate, blood pressure and respiratory rate. In medical practice, various types of measuring instruments are used to measure temperature, such as liquid thermometers, electronic thermometers, non-contact ear thermometers, non-contact forehead thermometers. Liquid and electronic thermometers require the appropriate sensors to be connected to a person, which may be undesirable or impossible as, for example, in newborns or during sports training. Non-contact thermometers operate over short distances and often force a specific position of the person during the measurement. In addition, the above body temperature measurement techniques require direct supervision by medical personnel, which often reduces the effectiveness and efficiency of screening temperature measurement. In screening temperature measurements of a large number of people, especially those on the move, a measuring thermal imaging camera works well. The article presents a method for measuring human body temperature using a thermal imaging camera. The presented method is characterized by high accuracy of temperature measurement, which allows medical use of the obtained measurements. The measurement method has been tested on a test stand and for a selected test sample of people. The measurements and tests carried out confirmed the possibility of obtaining temperature measurement accuracy with an expanded uncertainty of less than 0.05 K with a resolution of less than 0.1 K.
Artykuł prezentuje etap implementacji bezinwazyjnego systemu pozwalającego na okresowe monitorowanie szczelności gazociągów i stanu ich otoczenia. System składa się z podsystemu pomiarowego – śmigłowiec załogowy z zamontowanym spektroradiometrem podczerwieni i kamerą światła widzialnego oraz podsystemu informatycznego – serwer obliczeniowy z zainstalowanym oprogramowaniem do przetwarzania zarejestrowanych danych, w tym danych hiperspektralnych. W zakresie integracji systemu pomiarowego ze śmigłowcem zbudowano specjalne podwieszenie, które umożliwia bezpieczne użytkowanie kamery hiperspektralnej, oraz wykonano przewody pozwalające na niezakłóconą wymianę danych pomiędzy kamerą a systemem kontrolno-pomiarowym zamontowanym w kabinie helikoptera. Podwieszenie zostało przetestowane podczas prób w locie w zakresie drgań przekazywanych z układu napędowego helikoptera na układ pomiarowy spektroradiometru. Przeprowadzona analiza w dziedzinie częstotliwości oraz czasu sygnałów przyspieszeń, prędkości i przemieszczeń potwierdziła poprawność wykonanego projektu podwieszenia. W kolejnych testach postanowiono zweryfikować gotowość techniczną systemu pomiarowego. W tym celu wytyczono różne trasy przelotu, z uwzględnieniem ograniczeń toru optycznego spektroradiometru, skonfigurowano oprogramowanie, uwzględniając różne tryby rejestracji danych, a następnie wykonywano loty nad zbudowanym specjalnie dla potrzeb projektu stanowiskiem doświadczalnym, pozwalającym na symulowanie naziemnych i podziemnych wycieków metanu z infrastruktury gazowej. Wielokrotnie wykonane rejestracje danych w zakresach światła podczerwonego i widzialnego pozwoliły zgromadzić materiał badawczy niezbędny do weryfikacji gotowości technicznej systemu pomiarowego, poprawności działania stanowiska doświadczalnego oraz opracowanych algorytmów obliczeniowych. Podsystem informatyczny zbudowany jest ze zintegrowanych modułów obliczeniowych, które pozwalają na przetwarzanie danych hiperspektralnych w zakresie detekcji i kwantyfikacji emisji metanu oraz przetwarzanie obrazów w świetle widzialnym w zakresie klasyfikacji obiektów niedozwolonych, występujących w otoczeniu gazociągów. W kolejnym etapie moduły przeznaczone do przetwarzania zarejestrowanych przez kamerę hiperspektralną danych zostaną poddane testom w warunkach rzeczywistych oraz zostaną zoptymalizowane do postaci funkcjonalnego systemu informatycznego.
EN
The paper presents implementation of the design of a non-invasive system that allows periodic monitoring of the tightness of gas pipelines and the condition of their surroundings. The system consists of a measurement subsystem – a manned helicopter with an infrared spectroradiometer and a visible light camera, and an IT subsystem – a computing server with software for processing recorded data, including hyperspectral data. In terms of integrating the measurement system with the helicopter, a special suspension was built to enable safe use of the hyperspectral camera, and cables were made to enable uninterrupted data exchange between the camera and the control and measurement system installed in the helicopter cabin. The suspension was tested during flight tests in terms of vibrations transmitted from the helicopter's propulsion system to the spectroradiometer measurement system. The analysis carried out in the frequency and time domain of acceleration, velocity and displacement signals confirmed the correctness of the suspension design. In further tests, it was decided to verify the technical readiness of the measurement system. For this purpose, various flight routes were marked, taking into account the limitations of the optical path of the spectroradiometer, software was configured taking into account various data recording modes, and then flights were made over an experimental station built especially for the project, allowing the simulation of above-ground and underground methane leaks from the gas infrastructure. Multiple data recordings in the infrared and visible light ranges allowed collecting research material necessary to verify the technical readiness of the measurement system, the correct operation of the experimental station and the developed computational algorithms. The IT subsystem consisting of integrated calculation modules is currently being developed. It makes it possible to process hyperspectral data in the field of methane detection and quantification, and process visible light images in the field of classification of prohibited objects in the vicinity of gas pipelines. In the next stage, the modules intended to process the data recorded by the hyperspectral camera will be integrated into a functional IT system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.