Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Convolution theorems for starlike and convex functions in the unit disc
100%
EN
Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f'(0) − 1 = 0. For β < 1, let $P⁰_{β} = {f ∈ A: Re f'(z) > β, z ∈ Δ}$. For λ > 0, suppose that 𝓕 denotes any one of the following classes of functions: $M^{(1)}_{1,λ} = {f ∈ 𝓐 : Re{z(zf'(z))''} > -λ, z ∈ Δ}$, $M^{(2)}_{1,λ} = {f ∈ 𝓐 : Re{z(z²f''(z))''} > -λ, z ∈ Δ}$, $M^{(3)}_{1,λ} = {f ∈ 𝓐 : Re{1/2 (z(z²f'(z))'')' - 1} > -λ, z ∈ Δ}$. The main purpose of this paper is to find conditions on λ and γ so that each f ∈ 𝓕 is in $𝓢_{γ}$ or $𝒦_{γ}$, γ ∈ [0,1/2]. Here $𝓢_{γ}$ and $𝒦_{γ}$ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain a number of convolution theorems, namely the inclusions $M_{1,α} ∗ 𝓖 ⊂ 𝓢_{γ}$ and $M_{1,α} ∗ 𝓖 ⊂ 𝒦_{γ}$, where 𝓖 is either $𝓟⁰_{β}$ or $M_{1,β}$. Here $M_{1,λ}$ denotes the class of all functions f in 𝓐 such that Re(zf''(z)) > -λ for z ∈ Δ.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.