Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Carburizing is one of the most popular and wide used thermo-chemical treatment methods of surface modification of tool steels. It is a process based on carbon diffusive enrichment of the surface material and is applied for elements that are supposed to present higher hardness and wear resistance sustaining core ductility. Typical elements submitted to carburizing process are gears, shafts, pins and bearing elements. In the last years, more and more popular, especially in highly advanced treatment procedures used in the aerospace industry is vacuum carburizing. It is a process based on chemical treatment of the surface in lower pressure, providing much higher uniformity of carburized layer, lower process cost and much lesser negative impact on environment to compare with conventional carburizing methods, as for example gas carburizing in Endo atmosphere. Unfortunately, aerospace industry requires much more detailed description of the phenomena linked to this process method and the literature background shows lack of tests that could confirm fulfilment of all needed requirements and to understand the process itself in much deeper meaning. In the presented paper, authors focused their research on acetylene flow impact on carburized layer characteristic. This is one of the most crucial parameters concerning homogeneity and uniformity of carburized layer properties. That is why, specific process methodology have been planned based on different acetylene flow values, and the surface layer of the steel gears have been investigated in meaning to impact on any possible change in potential properties of the final product.
EN
Purpose: The preliminary results of research on forming the aluminide coatings using CVD method were presented in the article. Design/methodology/approach: The coatings were obtained in low activity process on the surface of Rene 80 superalloy. The microstructure analysis and chemical composition analysis were performed applying different values of aluminizing process parameters. Findings: The authors present in the article the results of oxidation resistance analysis of aluminide coatings which were obtained on the surface of Rene 80 superalloy using various techniques. Research limitations/implications: The research results revealed the possibility of obtaining coatings by low activity aluminizing. Practical implications: This process can be used in aerospace industry to form oxidation resistant coatings. Originality/value: It was shown that the coating created during the CVD process was characterized by a good oxidation resistance at the temperature of 1100°C.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.