The copolymers containing carbazole unit and iridium complexes, such as (Ir(bpy)2Cl, Ir(mbpy)2Cl and Ir(Brbpy)2Cl, were synthesized via radical copolymerization of N-vinylcarbazole, methyl methacrylate and iridium complex. The synthesized copolymers were characterized by FT-IR, UV-Vis absorption spectroscopy and photoluminescence (PL) spectroscopy, respectively. According to the results, the copolymers (Ir(Brbpy)2Cl/PVK and Ir(mbpy)2Cl/PVK) exhibit yellow phosphorescence with an emission peak at around 553 nm under UV-visible light in the solid state. The results also reveal almost complete energy transfer from the host carbazole segments to the guest Ir complex in the copolymer film when the Ir content reaches 1.0 wt.%. The synthesized copolymers are good candidates as blue or yellow phosphorescent materials for PLED applications.
His296 of Zymomonas mobilis levansucrase (EC 2.4.1.10) is crucial for the catalysis of the transfructosylation reaction. The three-dimensional structures of levansucrases revealed the His296 is involved in the substrate recognition and binding. In this study, nine mutants were created by site-directed mutagenesis, in which His296 was substituted with amino acids of different polarity, charge and length. The substitutions of His296 with Arg or Trp retained partial hydrolysis and transfructosylation activities. The positively charged Lys substitution resulted in a 2.5-fold increase of sucrose hydrolysis. Substitutions with short (Cys or Ser), negatively charged (Glu) or polar (Tyr) amino acids virtually abolished both the activities. Analysis of transfructosylation products indicated that the mutants synthesized different oligosaccharides, suggesting that amino acid substitutions of His296 strongly affected both the enzyme activity and transfructosylation products.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.