The aim of our study is to design and compare some predictive models for estimating the Bone Mineral Density score (BMD) t-score. The data were collected, except the t-score, by self-report from 356 women recruited from the Cantacuzino Hospital, Bucharest, Romania, during the period 1998-2003. The following methods are tuned and compared on this data: the General Regression Model (GRM), the Classification Trees (CT) and the Multilayer Perceptrons Network (MLP). Comparatively with a number of different bone densitometry criteria, currently used in clinical practice, we show that each of the above investigated models have a better sensitivity and specificity.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The complexity of the nonlinear models with random parameters doesn't generally allow to resolve in an easy way the parameters estimation problem. In this paper we design and use a multilayer neural network (MLNN) for the parameters estimation. We deal with the Baret model for the temporal evolution of the leaf area index (LAI).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.