We prove that any uniformly continuous Nemytskii composition operator in the space of functions of bounded generalized Φ-variation in the Schramm sense is affine. A composition operator is locally defined. We show that every locally defined operator mapping the space of continuous functions of bounded (in the sense of Jordan) variation into the space of continous monotonic functions is constant.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper is devoted to discuss some generalizations of the bounded total Φ-variation in the sense of Schramm. This concept was defined by W. Schramm for functions of one real variable. In the paper we generalize the concept in question for the case of functions of of two variables defined on certain rectangle in the plane. The main result obtained in the paper asserts that the set of all functions having bounded total Φ-variation in Schramm sense has the structure of a Banach algebra.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.