We have observed a paramagnetic-to-ferromagnetic phase transition in short period InGaMnAs/InGaAs superlattices. The thicknesses of magnetic InGaMnAs layers in the structures studied was chosen to be 4 or 8 molecular layers (12Å or 24Å). The non-magnetic InGaAs spacer layers are 12Å thick. The composition (In content) in InGaMnAs and InGaAs was chosen in such a way that magnetic layers were: deep potential wells, high potential barriers, or shallow potential wells. For superlattices with 8 monolayer thick InGaMnAs magnetic layers and 4 monolayer thick InGaAs non-magnetic spacers the temperatures of paramagnetic-to-ferromagnetic phase transition do not depend on the band offsets between InGaMnAs and InGaAs adjusted by the In content.
Bulk samples, layers, quantum well, and quantum dot structures of II-Mn-VI samples all show coexistence of slow and fast components of Mn^{2+} photoluminescence decay. Thus, fast photoluminescence decay cannot be related to low dimensionality of a host material. This also means that the model of the so-called quantum confined atom is incorrect. Based on the results of time-resolved photoluminescence and optically detected magnetic resonance investigations we relate the observed lifetime decrease in Mn^{2+} intra-shell transition to spin dependent magnetic interactions between localized spins of Mn^{2+} ions and between Mn^{2+} ions and spins/magnetic moments of free carriers. The latter mechanism is enhanced in nanostructures.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Ferromagnetic transition temperature in thin layers of diluted magnetic (semimagnetic) semiconductor Ge_{1-x}Mn_{x}Te was studied experimentally by SQUID magnetometry method and analyzed theoretically for a model Ising-type diluted magnetic system with Ruderman-Kittel-Kasuya-Yosida indirect exchange interaction. The key features of the experimentally observed dependence of the Curie temperature on Mn content (x ≤ 0.12) and conducting hole concentration p = (1-10) × 10^{21} cm^{-3} were reproduced theoretically for realistic valence band and crystal lattice parameters of p-Ge_{1-x}Mn_{x}Te taking into account short carrier mean free path encountered in this material and Ruderman-Kittel-Kasuya-Yosida mechanism with both delta-like and diffused character of spatial dependence of the exchange coupling between magnetic ions and free carriers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.