Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Measure and Helly's Intersection Theorem for Convex Sets
100%
|
|
nr 1
59-65
EN
Let $ℱ = {F_α}$ be a uniformly bounded collection of compact convex sets in ℝ ⁿ. Katchalski extended Helly's theorem by proving for finite ℱ that dim (⋂ ℱ) ≥ d, 0 ≤ d ≤ n, if and only if the intersection of any f(n,d) elements has dimension at least d where f(n,0) = n+1 = f(n,n) and f(n,d) = max{n+1,2n-2d+2} for 1 ≤ d ≤ n-1. An equivalent statement of Katchalski's result for finite ℱ is that there exists δ > 0 such that the intersection of any f(n,d) elements of ℱ contains a d-dimensional ball of measure δ where f(n,0) = n+1 = f(n,n) and f(n,d) = max{n+1,2n-2d+2} for 1 ≤ d ≤ n-1. It is proven that this result holds if the word finite is omitted and extends a result of Breen in which f(n,0) = n+1 = f(n,n) and f(n,d) = 2n for 1 ≤ d ≤ n-1. This is applied to give necessary and sufficient conditions for the concepts of "visibility" and "clear visibility" to coincide for continua in ℝ ⁿ without any local connectivity conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.