Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping $F = (f₁,..., fₘ): U → ℂ^m$, F(0) = 0, the Łojasiewicz exponent 𝓛₀(F) is attained on the set {z ∈ U: f₁(z)·...·fₘ(z) = 0}.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We give a relation between two theories of improper intersections, of Tworzewski and of Stückrad-Vogel, for the case of algebraic curves. Given two arbitrary quasiprojective curves V₁,V₂, the intersection cycle V₁ ∙ V₂ in the sense of Tworzewski turns out to be the rational part of the Vogel cycle v(V₁,V₂). We also give short proofs of two known effective formulae for the intersection cycle V₁ ∙ V₂ in terms of local parametrizations of the curves.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We show that for a polynomial mapping $F = (f₁,..., fₘ): ℂ^n → ℂ^m$ the Łojasiewicz exponent $𝓛_∞(F)$ of F is attained on the set ${z ∈ ℂ^n: f₁(z) ·...· fₘ(z) = 0}$.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For every holomorphic function in two complex variables with an isolated critical point at the origin we consider the Łojasiewicz exponent 𝓛₀(f) defined to be the smallest θ > 0 such that $|grad f(z)| ≥ c|z|^{θ}$ near 0 ∈ ℂ² for some c > 0. We investigate the set of all numbers 𝓛₀(f) where f runs over all holomorphic functions with an isolated critical point at 0 ∈ ℂ².
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.